Siggraph 2012 Course Graphics Programming for the Web (Introduction)

Graphics Programming
for the Web

Single sentence summary:
We introduce and demonstrate HTML5 web technologies that enable graphics developers to
produce complex, general-purpose graphics applications for the web.

Abstract

With the advent of HTML5 and the ever-improving browser performance, the world wide web
has emerged as an ideal platform for showcasing graphics applications. Several graphics
applications that earlier may have been too slow to be written in anything but native code may
now be fast enough to run as web apps. This course hopes to help those developers who wish
to develop graphics applications for the web. We introduce the dominant graphics technologies
that are accessible via web programming on most modern browsers.

We start with a quick primer on general-purpose web programming. We introduce HTML
parsing, CSS, DOM- and render-tree construction, and the use of Javascript for generating
dynamic web content. The bulk of this course describes the web technologies specific to
graphics:

1. HTML5 Canvas: path API, image editing, animation, comparison with SVG

2. CSS3: transitions, animations, 3D transforms and the new css-shaders

3. WebGL: getting started, achieving high performance, advanced 3D techniques

4. WebCL: the formal specifications, what’s implemented, and what’s to come

For each topic, we provide a significant number of code examples that illustrate the relevant
graphics capabilities. The course participants will see several interactive demos during the
course, and will also be able to copy and paste our code snippets and execute them easily
inside any modern web browser

We do not require the course participants to have any knowledge of web programming.
Graphics expertise is not required or assumed. However, we expect this course will be most
useful to people already familiar with graphics concepts.

Siggraph 2012 Course Graphics Programming for the Web (Introduction)

Online Course Repository:
The latest version of these notes and other helpful resources will be hosted at:
http://www.khronos.org/developers/library/2012-siggraph-course-graphics-programming-for-the-web

Sample Course Schedule
9:00 am: Introduction
9:05 am: Canvas &SVG
9:30 am: CSS

10:00 am: WebGL Part 1
10:30 am: break

10:45 am: WebGL Part 2
11:30 am: WebCL

12:15 pm Course End

(we will allot time for questions at the end of each section talk)

Instructors:

Pushkar Joshi is a graphics research engineer at Motorola Mobility. His research focuses on
geometric modeling, with an emphasis on casual modeling for novice users. Prior to Motorola
Mobility, he was a computer scientist at the Advanced Technology Labs at Adobe, where he
developed the core geometry engine for the Repoussé feature of Adobe Photoshop CS5.
Pushkar has a Ph.D. in computer science from the University of California, Berkeley.

Mikael Bourges-Sevenier is a multimedia software architect at Motorola Mobility focusing

on user experience and multicore applications on mobile devices. He is co-editor of WebCL
specification. Prior to Motorola, he was editor of various standards such as MPEG-4, X3D, U3D,
and their implementation in products of Adobe, Sun, iVAST, France Telecom. Mikael has an
MS. in mechanical and electrical engineering from ECAM Lyon, France and a MS. in signal and
image processing from University Rennes |, France.

Ken Russell is a software engineer on the Chrome web browser team at Google, Inc, and is
currently serving as the chair of the WebGL working group at Khronos. Ken has over fifteen
years of 3D graphics programming experience. He holds a Bachelor of Science in Electrical
Engineering and Computer Science from the Massachusetts Institute of Technology and a
Master of Science in Media Arts and Sciences from the MIT Media Lab.

Zhenyao Mo is a software engineer on the Chrome web browser team at Google, Inc. Zhenyao
earned his Ph.D. from University of Southern California, during which his research focused on
computer graphics. After graduation, he continued his enthusiasm in 3D graphics; for the

past 2.5 years working at Google, his main effort is implementing and improving WebGL in
webkit and Chrome.

http://www.khronos.org/developers/library/2012-siggraph-course-graphics-programming-for-the-web
http://www.khronos.org/developers/library/2012-siggraph-course-graphics-programming-for-the-web
http://www.khronos.org/developers/library/2012-siggraph-course-graphics-programming-for-the-web
http://www.khronos.org/developers/library/2012-siggraph-course-graphics-programming-for-the-web
http://www.khronos.org/developers/library/2012-siggraph-course-graphics-programming-for-the-web
http://www.khronos.org/developers/library/2012-siggraph-course-graphics-programming-for-the-web
http://www.khronos.org/developers/library/2012-siggraph-course-graphics-programming-for-the-web
http://www.khronos.org/developers/library/2012-siggraph-course-graphics-programming-for-the-web
http://www.khronos.org/developers/library/2012-siggraph-course-graphics-programming-for-the-web
http://www.khronos.org/developers/library/2012-siggraph-course-graphics-programming-for-the-web
http://www.khronos.org/developers/library/2012-siggraph-course-graphics-programming-for-the-web
http://www.khronos.org/developers/library/2012-siggraph-course-graphics-programming-for-the-web
http://www.khronos.org/developers/library/2012-siggraph-course-graphics-programming-for-the-web
http://www.khronos.org/developers/library/2012-siggraph-course-graphics-programming-for-the-web
http://www.khronos.org/developers/library/2012-siggraph-course-graphics-programming-for-the-web
http://www.khronos.org/developers/library/2012-siggraph-course-graphics-programming-for-the-web
http://www.khronos.org/developers/library/2012-siggraph-course-graphics-programming-for-the-web
http://www.khronos.org/developers/library/2012-siggraph-course-graphics-programming-for-the-web
http://www.khronos.org/developers/library/2012-siggraph-course-graphics-programming-for-the-web
http://www.khronos.org/developers/library/2012-siggraph-course-graphics-programming-for-the-web
http://www.khronos.org/developers/library/2012-siggraph-course-graphics-programming-for-the-web
http://www.khronos.org/developers/library/2012-siggraph-course-graphics-programming-for-the-web
http://www.khronos.org/developers/library/2012-siggraph-course-graphics-programming-for-the-web
http://www.khronos.org/developers/library/2012-siggraph-course-graphics-programming-for-the-web
http://www.khronos.org/developers/library/2012-siggraph-course-graphics-programming-for-the-web

Siggraph 2012 Course Graphics Programming for the Web (Introduction)

Introduction

Web programming has evolved from small tasks for dynamic web page content to full
applications for accomplishing complex tasks. Vast improvements in Javascript performance
in all major browsers, including those for mobile platforms, have made it possible for the web
to emerge as a common computing platform for most hardware and software configurations.
With the advent of HTML5 and CSS3, all dominant browsers provide a drawing API, complete
with manipulation of web page elements in 3D space. Through WebGL, most browsers also
provide a direct interface to the graphics hardware on the client computer. Upcoming WebCL
technologies make it even easier for people to convert their multithreaded native applications
into web applications. These factors make the web an especially ideal platform for showcasing
advanced graphics applications.

This course is targeted towards programmers who wish to write general-purpose graphics
applications for the web. By “general-purpose” we mean applications that may consume a large
amount of computing resources and are typically written in native (C/C++) code by experienced
graphics programmers. We wish to help those programmers write similar applications for the
web by introducing graphics web programming.

We do not require the course participants to have any knowledge of web programming.
Graphics expertise is not required or assumed; however, we expect this course will be most
useful to people familiar with graphics concepts.

After a quick primer on web programming, we introduce the HTML5 canvas element and
describe how it can be used to enable interactive drawing tools, image editing, and interactive
2D animations. Next we introduce CSS3 and show how it can be used to produce dynamic 3D
user interfaces, 2D image filters, and general-purpose CSS shaders. Next we show how 3D
graphical content can be displayed and manipulated via WebGL. Along with the initial setup
necessary for all WebGL programs, we also give commonly applicable hints for improved
graphics performance. Finally, we introduce the new WebCL specification that brings the
parallel computation of OpenCL to web programs.

Siggraph 2012 Course Graphics Programming for the Web (Introduction)

Web Programming Primer

In this section we introduce the technologies that are essential for web programming. Note that
we describe web programming at a very high level, and this section is intended for someone
completely new to web programming. Readers familiar with these topics can skip ahead to the
next section where we will start discussing web programming topics specific to graphics.

HTML and CSS

Most web content is in the form of plain text HTML (Hyper Text Markup Language). HTML is the
language used to mark-up content to the displayed on the web. The web content is mostly text
but can also include images or general binary objects (such as video). The mark-up is done by
a content identifier (also known as a tag) and usually instructs a web browser how to display the
content.

For example, an HTML page may contain tags like this: <p style=“bold”>sample text</p>.
The “sample text” in between the start (e.g. <p style=“bold”>) and stop (e.g. </p>) tags will
be displayed using the presentation style specified for the tag (bold, in this case). The display
style for each tag of the document is given to the browser by the CSS (Cascading Style Sheet)
for that document. The exact rules for writing HTML and CSS are defined in the specifications
published by the World Wide Web Consortium (W3C).

A browser parses the HTML page and adds content corresponding to the tag as a new element
of the page’s document object model (DOM). The DOM is the programming interface for
accessing and manipulating the contents of an HTML page. The DOM allows us to access
things like the properties of a specific element, the number of a certain type of a tag, etc. The
DOM elements form a DOM tree that gives us a hierarchical overview of the contents of the

page.

Consider the following html page source and its corresponding DOM tree:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01
Transitional//EN">

<html>

<body>

<div style="color:#FF@000; position:
relative;

left: 10; top: 10px; height: 400px; width:
100px; ">

<h2>Header Text</h2>

<p>Paragraph Text</p> |Text: “Header text” | |Text: “Paragraph text” |
</div>
</body>
</html>

Given the DOM tree, the browser produces a render tree: a tree of visual elements in the
order that they are painted. For the purpose of this course, think of these visual elements as
rectangles (one for each HTML block) that the browser will paint. As mentioned before, the

Siggraph 2012 Course Graphics Programming for the Web (Introduction)

rules used by the browser for displaying the visual element (e.g. the background color of the
rectangle) are provided by the presentation style associated with that element.

The standard practice is to not include the presentation style information directly in the HTML
tags (as was done above), but instead to describe the presentation style for each HTML tag
used in the web page in a separate file, called the stylesheet. This reduces the HTML page size,
and makes it easier to specify or change the style for an entire website (all web pages will refer
to the same style sheet).

The stylesheet that defines the style for every element of the DOM tree is given by the
Cascading Style Sheet (CSS) for that document. For example, as defined by the W3C box
model (http://www.w3.0org/TR/CSS2/box.html), each rectangle corresponding to certain HTML
tags (known as block tags) will be surrounded by additional rectangles (namely padding, border,
and margin). In addition, the style can contain information like fonts used, color of the text, style
of the text, and so on.

The term “cascading” in CSS refers to the order in which presentation rules are applied. The
presentation rule applied to an element of the render tree is automatically applied to its children
in the render tree, unless the child nodes have different presentation rules specified in the CSS.
All browsers will have a default stylesheet that defines the presentation style for DOM elements
not included in a particular web page’s stylesheet. CSS will be useful for us later in this tutorial,
when we discuss the new graphics-specific features of CSS.

After the render tree is generated, most browsers have a separate “layout” process that assigns
a position (X and Y location within the browser window) and width and height to each element
of the render tree. Think of this as a process of placing rectangles at certain locations within

the browser window and assigning a width and height to each rectangles. After the layout
process, the individual elements of the render tree are painted in the browser window in the
order specified by the render tree.

Javascript

Javascript is script language used to programmatically (i.e. dynamically) add or change content
for a web page or change the properties of existing content. For example, if you wanted to
change the text color contained in this tag:

<div id= “divName” style= “color: red” >

Sample Text

</div>

Siggraph 2012 Course Graphics Programming for the Web (Introduction)

when the user’'s mouse pointer hovered over the text, you could write a “onmouseover” handler
like this:
<div id= ‘“divName” onmouseover=
“document.getElementById('divTag').style.color="Blue’;”>
Sample Text
</div>
which will change the “Sample Text” color from red to blue on mouse over.
Through Javascript, we can access the DOM for the web page by calling functions
like “document.getElementById”.

Over the years, the scope of Javascript has grown significantly. Instead of being a language
only for making small changes to a mostly static web page, it is now used for performing
significant calculations or building large web frameworks. This growth in scope is due, in

large part, to the huge improvement in the performance of the Javascript interpreter in web
browsers (a performance improvement of roughly 25% per year). The improvement in the
Javascript interpreter performance is one of the things that enables us to write complex graphics
applications for the web.

Note that many traditional C/C++/Java programmers find Javascript to be frustrating. Javascript
is not a subset of Java (the name is, for the most part, a misnomer). Several aspects that many
programmers take for granted in other programming languages (like strong types, block scope
for variables) are not present in Javascript. Javascript does support some paradigms of modern
programming languages (like object-oriented design and inheritance) but not in an intuitive,
straight-forward manner. Moreover, browsers are extremely error tolerant, and Javascript
compilation errors are not reported until the offending line is executed. Therefore, learning
Javascript can be challenging for many software developers.

That being said, the web community has built several useful tools for helping Javascript
programmers. Here are some of them:

Testing for support on different platforms (which browsers and platforms support with feature)
http://caniuse.com

Testing code performance
http:/jsperf.com
(includes thousands of saved test cases, including those for graphics)

Talk on writing high-performance Javascript:
http://www.yuiblog.com/blog/2010/04/21/video-hpjs/

http://caniuse.com/
http://caniuse.com/
http://caniuse.com/
http://caniuse.com/
http://caniuse.com/
http://jsperf.com/
http://jsperf.com/
http://jsperf.com/
http://jsperf.com/
http://jsperf.com/
http://www.yuiblog.com/blog/2010/04/21/video-hpjs/
http://www.yuiblog.com/blog/2010/04/21/video-hpjs/
http://www.yuiblog.com/blog/2010/04/21/video-hpjs/
http://www.yuiblog.com/blog/2010/04/21/video-hpjs/
http://www.yuiblog.com/blog/2010/04/21/video-hpjs/
http://www.yuiblog.com/blog/2010/04/21/video-hpjs/
http://www.yuiblog.com/blog/2010/04/21/video-hpjs/
http://www.yuiblog.com/blog/2010/04/21/video-hpjs/
http://www.yuiblog.com/blog/2010/04/21/video-hpjs/
http://www.yuiblog.com/blog/2010/04/21/video-hpjs/
http://www.yuiblog.com/blog/2010/04/21/video-hpjs/
http://www.yuiblog.com/blog/2010/04/21/video-hpjs/
http://www.yuiblog.com/blog/2010/04/21/video-hpjs/
http://www.yuiblog.com/blog/2010/04/21/video-hpjs/

Siggraph 2012 Course: Graphics Programming for the Web (Canvas and CSS)

Canvas and CSS

Pushkar Joshi, Motorola Mobility

HTML5 Canvas

Drawing Tool
Fill and Stroke Styles

Layout and Transformations

Image Editing

Animation

Comparison with SVG

SS

Planes in Space
Animations

Image Filters
General-Purpose CSS Shaders

P)

Siggraph 2012 Course: Graphics Programming for the Web (Canvas and CSS)

HTML5 Canvas

Once we are introduced to HTML, CSS, and Javascript, we are ready to learn about the canvas
element that was introduced in HTML5. The canvas element is the easiest way to obtain an
interactive drawing surface for a web page on a modern browser, and is currently extensively
used for creating web-based games.

Similar to other block content tags like <div> or <p>, the <canvas> tag identifies a rectangular
region of the browser window. Standard CSS operations (like setting the width, height,
background color, and position) that can be performed on standard content tags like <div> can
also be performed on the <canvas> tag. In case the browser cannot display the canvas (i.e.
older browsers), we display a fallback message contained within the beginning <canvas> and
end </canvas> tags.

<html> [l I X I'
<body> —_ @
<canvas id="mycanvas" / ©) blueCanvas.html

width="150" height="150 C < path/to/blueCanvas.html X
style="position: relative;

left:100; top: 25;
background-color:#CCCCFF">
Fallback content goes here
</canvas>

</body> 100
</html>

) 25

The HTML document on the left produces a blue square canvas shown on the right. The
canvas is offset by 100 pixels from the left and 25 pixels from the top, as specified by its style
in the <canvas> tag above. Notice that with older browsers that do not support HTMLS5, the
text “Fallback content goes here” will be displayed instead of the canvas.

Unlike the other HTML tags, the <canvas> tag offers a drawing context that can access and
paint the individual pixels inside the canvas. People familiar with OpenGL or DirectX will be
familiar with the notion of a drawing context. A drawing context is essentially the “surface” on
which you can draw/paint your pixels. The standard method for accessing the drawing context
is through Javascript. We have added some Javascript to the HTML document from earlier. This
script queries the DOM and then calls the “getContext()” function of the canvas object:

<htmI>

<head>

<script type="application/javascript">
function draw() {

Siggraph 2012 Course: Graphics Programming for the Web (Canvas and CSS)

var canvas = document.getElementByld("mycanvas");
if (canvas.getContext) {
var context = canvas.getContext("2d");
llissue drawing commands here...

}
}
</script>
</head>
<body onload="draw();">
<canvas id="mycanvas" width="150" height="150" style="position: relative; left:100px; top:
25px; background-color:#CCCCFF">
Fallback content goes here
</canvas>
</body>
</html>

Currently, two types of contexts are supported: a 2d context that offers the ability to manipulate
the canvas like a bitmap, and a WebGL context that offers the ability to draw in 3D. In this
section, we will cover the 2D drawing context, and WebGL will be covered in a separate section.

The coordinate system of the 2D context has its origin in the top left corner of the content of the
box. The coordinates of any objects drawn in this context must lie in the range [0, canvas width]
and [0, canvas height]. Any objects that do not lie within this range will be ignored and clipped.

The HTMLS5 canvas uses the “immediate” mode of drawing: the drawing commands are
executed immediately after being issued, and the system saves no information about what was
just drawn. The only state of the canvas saved by the browser is the color of the pixels inside
the canvas. Later, we contrast this with SVG, which uses the “declarative” or “retained” graphics
mode. Unlike the canvas element, every SVG element can be referenced through the DOM and
edited later on.

In the rest of this section, we will describe some of the functionality possible with the HTML5
Canvas API that is particularly relevant for graphics developers.

Drawing Tool

HTML5 introduced a quite powerful API for drawing and filling paths. Using this API, we can
construct a vector design or sketching web application. See http://mugtug.com/sketchpad/ for
an example. If you are familiar with legacy drawing APIs like xLib or vector drawing APlIs like
PostScript, you will recognize the format of the path API. Similar to those APls, we mimic the
pen and plotter interface where every new object is drawn by first lifting and moving the drawing
pen to the start location and then tracing along the path to be drawn.

http://mugtug.com/sketchpad/
http://mugtug.com/sketchpad/
http://mugtug.com/sketchpad/
http://mugtug.com/sketchpad/
http://mugtug.com/sketchpad/
http://mugtug.com/sketchpad/
http://mugtug.com/sketchpad/
http://mugtug.com/sketchpad/
http://mugtug.com/sketchpad/

Siggraph 2012 Course: Graphics Programming for the Web (Canvas and CSS)

context.lineWidth=7;

Ithe nose polyline
context.beginPath();
context.moveTo(250,275);
context.lineTo(200,375);
context.lineTo(250,375);
context.stroke();

Iconvert deg to radians
(0,0) X var d2R = Math.P1/180;

v

Ithe eyebrow: circular arcs
; context.beginPath();
Circular

Arcs context.arc(190, 220, 40, 210*d2R, 300*d2R);
context.stroke();

context.beginPath();
context.arc(310, 220, 40, 240*d2R, 330*d2R);
context.stroke();

O
- Ithe eyeball: circles
) 7 OuER R E | context.beginPath();

context.arc(190, 250, 40, 0, 2*Math.PI, false);

context.stroke();

Y

context.beginPath();
context.arc(310, 250, 40, 0, 2*Math.PI, false);
context.stroke();

Ithe lower lip: cubic Bezier curve
context.moveTo(200, 400);
context.bezierCurveTo(225,475,275,475,300,400);

Ithe upper lip: quadratic Bezier curve
context.moveTo(200,400);
context.quadraticCurveTo(250,450,300,400);
context.stroke();

In the figure above, the code on the right produces the line drawing on the left for a 500x500
pixel canvas. This example demonstrates the ability to draw polylines, circular arcs (including
full circles), cubic Bezier paths, and quadratic Bezier paths. Notice the use of the “beginPath()”
function to indicate that a new path is being drawn for cases where calling “moveTo()” would
be more complicated. Prior to “beginPath()” we must call the “stroke()” function to render the
previous path.

The path API includes two geometric functions that are commonly needed for graphics tasks, so
they are worth mentioning here.

Siggraph 2012 Course: Graphics Programming for the Web (Canvas and CSS)

context.beginPath();
context.arc(100,310,40,0,2*Math.Pl,false);
context.stroke();
if (context.isPointinPath(mouseX, mouseY)){
context.fillStyle="red";
contexct.fill();

}

Tracking when the mouse pointer enters a path by using the isPointinPath() function using the
current mouse pointer coordinates. If the mouse is detected to be inside the path, we fill the path
with a solid red color.

The “isPointInPath(x,y)” function returns true if the input (x,y) position is inside the path,
assuming a non-zero winding number rule (i.e. same rule used for filling the path). This can be
useful for intersection testing, especially for collision detection in games.
context.save();

Iblue circle: clip mask
context.beginPath();
ontext.arc(250,250,200,0,2*Math.PI);
gontext.stroke();
(context.isPointinPath(mouseX, mouseY)){
context.clip();
4)

Igreen circle: gets clipped
context.beginPath();
context.arc(250,375,100,0,2*Math.PlI);
context.strokeStyle="green";
context.stroke();

context.restore();

When the mouse pointer enters the blue path, we specify the drawing context to clip all
subsequent drawing calls against the blue path. The clipping can be turned off by calling the
context “restore()” function.

The “clip()” method is used to indicate that only the part of the canvas that’s inside the path
will be rendered to the canvas. Make sure to include the “save()” function prior to calling

the “clip()” method, so the clipping can be turned off by calling the corresponding “restore()
” function.

Fill and Stroke Styles

Whatever shape has been added to the path so far will be filled when you issue the fill()
command. Even open paths can be filled — for the purpose of the fill, the path is assumed to be
closed by connecting the last point to the first point. The fill rule for complex (self-intersecting)
paths is the non-zero winding number rule — the region of the path that has a non-zero winding
number is filled. Obviously, this is independent of the orientation of the path.

Siggraph 2012 Course: Graphics Programming for the Web (Canvas and CSS)

The shape can be filled with a solid color, a gradient, or a pattern (tiled images), as shown
below:

context.fillStyle="blue";

var gradient =
context.createRadialGradient(w/2,h/2,0, w/2,h/2,w/2);

gradient.addColorStop(0, "blue");
. gradient.addColorStop(1, "rgba(255,255,255,1.0)");

context.fillStyle = gradient;

var gradient = context.createLinearGradient(w/4,h/2,w*0.75,h/2);
gradient.addColorStop(0, “blue");

gradient.addColorStop(1, "rgba(255,255,255,1.0)");
context.fillStyle = gradient;

var img = new Image();

img.src = 'star.jpg’;

var myPattern = context.createPattern(img,'repeat’);
context.fillStyle = myPattern;

eobesiieriol

Lokl
bk
bk
e e
e M

Beseoiieotiont

The same rules that apply for “fillStyle()” also apply for “strokeStyle()”. Thatis, the
stroke region for a path can be filled with a solid color, a gradient (radial or linear), or a
repeating image pattern.

Layout and Transformations

Any shape drawn on the canvas can be transformed in order to position it anywhere within
the canvas coordinate space. In this way the Canvas API can be used to layout 2D graphical
elements on the screen.

Siggraph 2012 Course: Graphics Programming for the Web (Canvas and CSS)

? context.save();
I context.translate(Ax,Ay);
I > context.rotate(Math.PI/4);
: context.fillText("A",0,0);

AYI context.restore();
|
l

<)
Ax

!

context.scale(2,1);

Let us consider the task of typing the letters A, B, C, D along a zigzag path, as shown in the
figure above. While we could use the path API to draw the letters, we’'ll take the simpler option
of using the text api (i.e. the ‘FillText ()’ or ‘strokeText ()’ functions) built into the 2D
drawing context.

The transformations affect the coordinate system of the drawing context. See the code block
above for the letter a typical call to translate and rotate the letter A in order to place it in the
proper position. Except in few cases, the order of the transformations is important. For example,
calling the rotate function before the translate function would not have rotated the letter in place
as above.

Experienced graphics developers will see the similarity between this transformation model and
that present in prevalent graphics APlIs like OpenGL or DirectX. Similar to those graphics API,
we can concatenate the entire transformation and specify it as one homogeneous (3x3) matrix
via the “transform()” and “setTransform()” functions in the Canvas API. Both functions take
six arguments (the number of degrees of freedom available for 2D transforms). The difference
between the “transform()” and “setTransform()” function is that the former concatenates
the specified transformation to the current transformation, while the latter sets the specified
transformation as the only transformation (we lose the history of the previous transforms).

You may have noticed calls to “save()” and “restore().” The “save” function pushes

the current drawing context state (including the transformation, along with some other

state variables) onto a stack. Subsequent calls to change the state (e.g. via additional
transformations) will concatenate to the current state, but the original state can be recovered
by the “restore()” function that will pop the top of the stack and set the current state to

Siggraph 2012 Course: Graphics Programming for the Web (Canvas and CSS)

the popped off value. Again, experienced graphics developers will notice the similarity
between “save()” and glPushMatrix() and “restore()” and glPopMatrix() in OpenGL.

Image Editing

The Canvas API allows random access to the byte-level RGBA values of the individual pixels
within the coordinate space of the canvas. Therefore, we can set the colors of any part of

the canvas on a pixel-by-pixel level. We can also load arbitrary images into the canvas and
manipulate their pixel values. Given these functions, we can implement a comprehensive set of
image editing features using the canvas API.

Here are some code snippets that you will need in order to perform any image editing
functionality:

Loading and displaying images

var imageObject = new Image();

imageObject.src = “<path_to_image file>”;

imageObject.onload = function() {

context.drawImage(imageObject,0,0);

}
In the above code, we first create an image object and specify the path to the actual image file.
Also, “context” is the standard Canvas 2D context, the “0,0” in the drawlmage call specifies the
top left corner of the image (at the canvas origin in this case), and the image is drawn only when
it is fully loaded (i.e. is in the onload event handler for the image object).

Access pixels
Now that the image is drawn on the canvas, we get a pointer to its pixels. At any time we
can obtain a 1D array of pixels that contain the current color values of the canvas element
by using the getImageData function. We can get all or a subset of the canvas pixels. The
returned 1D array of pixels is ordered left to right, followed by top to bottom.

var imageData = context.getImageData(0,0,canvaswidth,canvasheight);

Changing pixels
Once we have access to the pixel array, we can modify its values. The following example
converts the colored pixels into a grayscale representation.
var pixels = imageData.data;
for (var i = @, n = pixels.length; i < n; i += 4) {
//gray = 30% red + 59% green + 11% blue
var gray = (pixels[i]*@.3) + (pixels[i+1]*@.59) + (pixels[i+2]*0.11);

pixels[i] = gray;
pixels[i+1] = gray;
pixels[i+2] = gray;

}
Note that each pixel actually takes four spots in the pixel array (one for each of Red, Green,

Blue, and Alpha values), which is why we increment our array iterator by 4.

Updating the canvas

After modifying the pixels, we need to update the image displayed by the canvas. We do so by

replacing the current value of the pixels by the modified value:
context.putImageData(imageData, 0, 9);

As before, we can position the new pixels anywhere within the canvas, and in the example

Siggraph 2012 Course: Graphics Programming for the Web (Canvas and CSS)

above, we have positioned it at the canvas origin.

A common image editing operation performed using the Canvas API is the implementation of
image filters. See the following link for a demo. of some Canvas API image filters, including
some convolution (sharpen, Laplace, etc.) filters:
http://www.html5rocks.com/en/tutorials/canvas/imagefilters/

If your image editing application is limited to filters where you will perform the same operation
for every pixel (e.g. you wish to perform a fixed stencil convolution over the image), we
recommend you limit the use of HTML5 Canvas only for prototyping, and use WebGL or CSS
filters (described later) for the actual release code. The latter option will prevent the expensive
Javascript loop over all the pixels, and can instead be executed in parallel as GPU shaders.

Animation

Remember that the HTML5 canvas operates in “immediate” mode, and does not save any
information about the objects drawn on it. Given this immediate mode, animation is performed
by modifying the position of the animated object and simply redrawing the region of the canvas
that has changed. In most cases, the modified region includes the entire canvas.

http://bomomo.com/
http://www.blobsallad.se/

Performance Improvement

Traditionally, the code for animation using Javascript utilizes a timer, where some code

for updating the position of elements in the browser is invoked at regular intervals (using

the “setTimeout(<callback>,<timeout_interval>)” function call). The problem with that
approach is that complex animations can slow down the browser and produce an undesirable
user experience. The new, preferred method is to use the new requestanimationframe
function that indicates that we wish to animate the contents of the browser window at 60Hz
(ideally) or as fast as possible for the browser (if not 60Hz). This allows the browser to optimize
code for us, and also prevents the host computer from being unnecessarily slowed down due to
our animation.

Therefore, we can use the following code structure (originally from http://paulirish.com/2011/
requestanimationframe-for-smart-animating/):

//define the correct requestAnimationFrame function first
window.requestAnimationFrame = window.webkitRequestAnimationFrame ||
window.mozRequestAnimationFrame || window.msRequestAnimationFrame;

//invoke the requestAnimationFrame function in the render callback
function animateCanvas(time) {
//specify that we wish to update the canvas at 60Hz
window.requestAnimationFrame(animateCanvas, canvas);

//display the entire canvas (includes both the changed and unchanged
items)
drawCanvas();

}

The following link describes the use of requestAnimationFrame and other hints for improving

http://www.html5rocks.com/en/tutorials/canvas/imagefilters/
http://www.html5rocks.com/en/tutorials/canvas/imagefilters/
http://www.html5rocks.com/en/tutorials/canvas/imagefilters/
http://www.html5rocks.com/en/tutorials/canvas/imagefilters/
http://www.html5rocks.com/en/tutorials/canvas/imagefilters/
http://www.html5rocks.com/en/tutorials/canvas/imagefilters/
http://www.html5rocks.com/en/tutorials/canvas/imagefilters/
http://www.html5rocks.com/en/tutorials/canvas/imagefilters/
http://www.html5rocks.com/en/tutorials/canvas/imagefilters/
http://www.html5rocks.com/en/tutorials/canvas/imagefilters/
http://www.html5rocks.com/en/tutorials/canvas/imagefilters/
http://www.html5rocks.com/en/tutorials/canvas/imagefilters/
http://www.html5rocks.com/en/tutorials/canvas/imagefilters/
http://www.html5rocks.com/en/tutorials/canvas/imagefilters/
http://www.html5rocks.com/en/tutorials/canvas/imagefilters/
http://www.html5rocks.com/en/tutorials/canvas/imagefilters/
http://www.html5rocks.com/en/tutorials/canvas/imagefilters/
http://www.html5rocks.com/en/tutorials/canvas/imagefilters/
http://bomomo.com/
http://bomomo.com/
http://bomomo.com/
http://bomomo.com/
http://bomomo.com/
http://bomomo.com/
http://www.blobsallad.se/
http://www.blobsallad.se/
http://www.blobsallad.se/
http://www.blobsallad.se/
http://www.blobsallad.se/
http://www.blobsallad.se/
http://www.blobsallad.se/
http://www.blobsallad.se/
http://paulirish.com/2011/requestanimationframe-for-smart-animating/
http://paulirish.com/2011/requestanimationframe-for-smart-animating/
http://paulirish.com/2011/requestanimationframe-for-smart-animating/
http://paulirish.com/2011/requestanimationframe-for-smart-animating/
http://paulirish.com/2011/requestanimationframe-for-smart-animating/
http://paulirish.com/2011/requestanimationframe-for-smart-animating/
http://paulirish.com/2011/requestanimationframe-for-smart-animating/
http://paulirish.com/2011/requestanimationframe-for-smart-animating/
http://paulirish.com/2011/requestanimationframe-for-smart-animating/
http://paulirish.com/2011/requestanimationframe-for-smart-animating/
http://paulirish.com/2011/requestanimationframe-for-smart-animating/
http://paulirish.com/2011/requestanimationframe-for-smart-animating/
http://paulirish.com/2011/requestanimationframe-for-smart-animating/
http://paulirish.com/2011/requestanimationframe-for-smart-animating/
http://paulirish.com/2011/requestanimationframe-for-smart-animating/
http://paulirish.com/2011/requestanimationframe-for-smart-animating/

Siggraph 2012 Course: Graphics Programming for the Web (Canvas and CSS)

performance on HTML5 Canvas:
http://www.html5rocks.com/en/tutorials/canvas/performance/

Comparison with SVG

Some readers will have observed the similarity between the path drawing and filling capabilities
of the HTMLS Canvas and those of the Scalable Vector Graphics (SVG) specification commonly
implemented on modern web browsers. In many aspects, the HTML5 Canvas is similar to SVG.
In this sub-section, we point out the differences between the two, especially those that are
relevant for graphics programmers.

The main difference between the HTML5 Canvas and SVG is their rendering mode: HTML5
Canvas uses immediate mode, while SVG uses declarative mode. By using declarative mode,
we can access individual SVG elements through the DOM and modify their properties (such as
position, color, visibility) without needing to re-draw the drawing area. The re-draw is handled
by the browser. In this sense, an SVG element is similar to an HTML element --- we can change
the individual element properties dynamically and the web page is re-drawn automatically.

The declarative mode of SVG also includes another feature: grouping. Vector artwork can be
combined into one groups, several of which can be further combined into another group, and
so on. Such a hierarchical organization or artwork in semantically relevant groups allows us
to specify regions of influence of local transformations (useful for adding details to existing,
animated vector artwork, for example).

Another difference between SVG and HTML5 Canvas is the use of filter effects in SVG. While
SVG does not offer direct byte-level access to pixels like HTML5 Canvas does, a fixed set of
image filters can be applied directly to the SVG elements, without needing to write them in
(slower) Javascript. See this site for an example:

http://ie.microsoft.com/testdrive/Graphics/hands-on-css3/hands-on_svg-filter-effects.htm

We shall explore SVG filter effects in more detail in the next section on CSS3, when we
describe CSS shaders.

http://www.html5rocks.com/en/tutorials/canvas/performance/
http://www.html5rocks.com/en/tutorials/canvas/performance/
http://www.html5rocks.com/en/tutorials/canvas/performance/
http://www.html5rocks.com/en/tutorials/canvas/performance/
http://www.html5rocks.com/en/tutorials/canvas/performance/
http://www.html5rocks.com/en/tutorials/canvas/performance/
http://www.html5rocks.com/en/tutorials/canvas/performance/
http://www.html5rocks.com/en/tutorials/canvas/performance/
http://www.html5rocks.com/en/tutorials/canvas/performance/
http://www.html5rocks.com/en/tutorials/canvas/performance/
http://www.html5rocks.com/en/tutorials/canvas/performance/
http://www.html5rocks.com/en/tutorials/canvas/performance/
http://www.html5rocks.com/en/tutorials/canvas/performance/
http://www.html5rocks.com/en/tutorials/canvas/performance/
http://www.html5rocks.com/en/tutorials/canvas/performance/
http://www.html5rocks.com/en/tutorials/canvas/performance/
http://www.html5rocks.com/en/tutorials/canvas/performance/
http://www.html5rocks.com/en/tutorials/canvas/performance/
http://ie.microsoft.com/testdrive/Graphics/hands-on-css3/hands-on_svg-filter-effects.htm
http://ie.microsoft.com/testdrive/Graphics/hands-on-css3/hands-on_svg-filter-effects.htm
http://ie.microsoft.com/testdrive/Graphics/hands-on-css3/hands-on_svg-filter-effects.htm
http://ie.microsoft.com/testdrive/Graphics/hands-on-css3/hands-on_svg-filter-effects.htm
http://ie.microsoft.com/testdrive/Graphics/hands-on-css3/hands-on_svg-filter-effects.htm
http://ie.microsoft.com/testdrive/Graphics/hands-on-css3/hands-on_svg-filter-effects.htm
http://ie.microsoft.com/testdrive/Graphics/hands-on-css3/hands-on_svg-filter-effects.htm
http://ie.microsoft.com/testdrive/Graphics/hands-on-css3/hands-on_svg-filter-effects.htm
http://ie.microsoft.com/testdrive/Graphics/hands-on-css3/hands-on_svg-filter-effects.htm
http://ie.microsoft.com/testdrive/Graphics/hands-on-css3/hands-on_svg-filter-effects.htm
http://ie.microsoft.com/testdrive/Graphics/hands-on-css3/hands-on_svg-filter-effects.htm
http://ie.microsoft.com/testdrive/Graphics/hands-on-css3/hands-on_svg-filter-effects.htm
http://ie.microsoft.com/testdrive/Graphics/hands-on-css3/hands-on_svg-filter-effects.htm
http://ie.microsoft.com/testdrive/Graphics/hands-on-css3/hands-on_svg-filter-effects.htm
http://ie.microsoft.com/testdrive/Graphics/hands-on-css3/hands-on_svg-filter-effects.htm
http://ie.microsoft.com/testdrive/Graphics/hands-on-css3/hands-on_svg-filter-effects.htm
http://ie.microsoft.com/testdrive/Graphics/hands-on-css3/hands-on_svg-filter-effects.htm
http://ie.microsoft.com/testdrive/Graphics/hands-on-css3/hands-on_svg-filter-effects.htm
http://ie.microsoft.com/testdrive/Graphics/hands-on-css3/hands-on_svg-filter-effects.htm
http://ie.microsoft.com/testdrive/Graphics/hands-on-css3/hands-on_svg-filter-effects.htm
http://ie.microsoft.com/testdrive/Graphics/hands-on-css3/hands-on_svg-filter-effects.htm
http://ie.microsoft.com/testdrive/Graphics/hands-on-css3/hands-on_svg-filter-effects.htm
http://ie.microsoft.com/testdrive/Graphics/hands-on-css3/hands-on_svg-filter-effects.htm
http://ie.microsoft.com/testdrive/Graphics/hands-on-css3/hands-on_svg-filter-effects.htm
http://ie.microsoft.com/testdrive/Graphics/hands-on-css3/hands-on_svg-filter-effects.htm
http://ie.microsoft.com/testdrive/Graphics/hands-on-css3/hands-on_svg-filter-effects.htm
http://ie.microsoft.com/testdrive/Graphics/hands-on-css3/hands-on_svg-filter-effects.htm
http://ie.microsoft.com/testdrive/Graphics/hands-on-css3/hands-on_svg-filter-effects.htm
http://ie.microsoft.com/testdrive/Graphics/hands-on-css3/hands-on_svg-filter-effects.htm

Siggraph 2012 Course: Graphics Programming for the Web (Canvas and CSS)

CSS

Remember that the after building the DOM tree, the browser performs a layout process. For the
purpose of this course, think of the layout as the placement of rectangular regions (one for each
HTML block element) within the 2D space of the browser window. As mentioned before, the
rules used by the browser for displaying each visual element (e.g. the background color of the
rectangular region) are provided by the CSS style associated with that element.

In this section, we describe some of the new features in CSS that are relevant for graphics
programmers. These new features significantly improve the ability to dynamically change the
display styles of HTML elements, most notably the position and orientation of those elements.
CSS allows us to easily produce animations without needing any Javascript code to update
positions programmatically. Since this transfers the animation functionality from non-native
(Javascript) code to native and carefully optimized (browser) byte-code, it usually produces
significant performance improvements.

Similar to the HTML5 Canvas section, we introduce the graphics capabilities of CSS by showing
how CSS can be used to implement functionality commonly needed by graphics applications.
We shall consider two applications: planes in space, and image filters.

Planes in Space

The term “planes in space” refers to the ability to place 2D planar polygons at any position and
orientation in 3D space. Previously we could place any HTML block element at any position
within the 2D window. Typically this was done by changing the “left” and “top” style attributes for
that element.

Consider the task of placing a <div> element at a horizontal distance 100 pixels and a vertical
distance of 25 pixels from the top-left corner of the browser window. We use the following code:

<html> BueDiv * & -
< body) € C A path to webpage

I 25 pixels
<div style="width: 500px; height: 500px;

position: relative; 'm’ Hello '
left:100; top: 25; °
background-color:#CCCCFF">
Hello!
</div>
</body>
</html>

Siggraph 2012 Course: Graphics Programming for the Web (Canvas and CSS)

We can add a 3D effect to the 2D element by making it rotate by 60 degrees about the vertical
(Y) axis. If we use a browser using the Webkit layout engine (e.g. Google Chrome, Apple
Safari), we use the following code:

<html> /) Bive Div u I ————
<body> € € Qpathto webpage

<div style="width: 500px; height: 500px;
position: relative; left:100; top: 25; }1 11 '
-webkit-transform: rotateY(60deg); e 0.
background-color:#CCCCFF">
Hello!

</div>

</body>

</html>

The transforms can be concatenated:

<htm1> Blue Div \ - -
€ 2 C Q path to webpage
<body>

<div style="width: 500px; height: 500px;

position: relative; left:100; top: 25; 15%37
[}

-webkit-transform: rotateY(60@deg)
rotatez(3edeg);
background-color:#CCCCFF">

Hello!

</div>

</body>

</html>

We can specify most common types of 3D transformations (rotate, translate, scale, skew,

and perspective) on any block element. We can even specify directly the 4x4 transformation
matrix to be applied to the element. See http://dev.w3.org/csswag/css3-transforms/ for the API
currently proposed for CSS transforms. Also see http://desandro.github.com/3dtransforms/ for
an excellent explanation of the CSS transforms in depth.

The benefit of applying 3D transforms to a block element is that after transforming the

http://dev.w3.org/csswg/css3-transforms/
http://dev.w3.org/csswg/css3-transforms/
http://dev.w3.org/csswg/css3-transforms/
http://dev.w3.org/csswg/css3-transforms/
http://dev.w3.org/csswg/css3-transforms/
http://dev.w3.org/csswg/css3-transforms/
http://dev.w3.org/csswg/css3-transforms/
http://dev.w3.org/csswg/css3-transforms/
http://dev.w3.org/csswg/css3-transforms/
http://dev.w3.org/csswg/css3-transforms/
http://dev.w3.org/csswg/css3-transforms/
http://dev.w3.org/csswg/css3-transforms/
http://dev.w3.org/csswg/css3-transforms/
http://dev.w3.org/csswg/css3-transforms/
http://dev.w3.org/csswg/css3-transforms/
http://desandro.github.com/3dtransforms/
http://desandro.github.com/3dtransforms/
http://desandro.github.com/3dtransforms/
http://desandro.github.com/3dtransforms/
http://desandro.github.com/3dtransforms/
http://desandro.github.com/3dtransforms/
http://desandro.github.com/3dtransforms/
http://desandro.github.com/3dtransforms/
http://desandro.github.com/3dtransforms/
http://desandro.github.com/3dtransforms/
http://desandro.github.com/3dtransforms/

Siggraph 2012 Course: Graphics Programming for the Web (Canvas and CSS)

element, the browser continues to interact with contents of the element as before. Text in the
element remains selectable, links still work, and videos or images are displayed with correct
transformations. This makes the CSS3 transforms very useful for creating 3D interactive user
interfaces. The links below give some examples:

A simple image flip on mouse over:
http://www.webkit.org/blog-files/3d-transforms/image-flip.html

More advanced image effects using CSS:
https://developer.mozilla.org/en-US/demos/detail/3d-image-transitions/launch

Placing webpage elements in 3D space:
http://www.webkit.org/blog-files/3d-transforms/morphing-cubes.html

Note: You may be wondering why we needed to use the prefix “-webkit-" for style attributes
like transform. The newer CSS styles are not yet finalized by the W3C. In order to allow
browsers to support the non-finalized feature or an incomplete implementation of the feature,
individual browsers support the prefixed forms of the style attribute. Browsers with the Webkit
layout engine (e.g. Google Chrome, Apple Safari) will respect the transform attribute with
the “-webkit-” prefix. Similarly, Mozilla-based Firefox needs the “-moz-" prefix, Internet
Explorer the “-ms-" prefix, and Opera the “-o-" prefix. This is a temporary solution until the
CSS specification is finalized by the W3C and universally adopted by all browsers. Until then,
you need to specify all the prefixes for the new style attributes so your code may run on all
browsers. You can use tools like “Prefix free” (http://leaverou.qithub.com/prefixfree/) to produce
the prefixed versions of the CSS attributes automatically at script runtime.

Animations

In the demos above, elements placed by CSS are animated. We can control the manner in
which they move from one position to the other. A simple method to bring about animation
is via CSS transitions. For example, our example above for rotating the <div> element can
be animated by applying a transition on the transform style attribute. The transform style
attribute itself is modified when the user clicks on the element.

<html>

<body>

<div style="width: 500px; height: 500px; position: relative; left:100; top: 25;
background-color:#CCCCFF;

-webkit-transition: -webkit-transform 3s ease-in;"
onclick="this.style.webkitTransform="rotateY(60deg) rotatez(30deg)'">

Hello!

</div>

</body>

</html>

In the above example, we set the style of the “-webkit-transition” to be “-webkit-
transform 3s ease-in”. As you can guess, this means that we are adding a transition to the
-webkit-transform attribute that is 3 seconds long, and we ease-in from the old value to the
new one. We can specify transitions on all/none/some of the style attributes of the element, for
any duration, and with different timing functions (ease-in, ease-out, linear, etc.). The complete
specification for the transitions is provided here: http://www.w3.org/TR/css3-transitions/.

http://www.webkit.org/blog-files/3d-transforms/image-flip.html
http://www.webkit.org/blog-files/3d-transforms/image-flip.html
http://www.webkit.org/blog-files/3d-transforms/image-flip.html
http://www.webkit.org/blog-files/3d-transforms/image-flip.html
http://www.webkit.org/blog-files/3d-transforms/image-flip.html
http://www.webkit.org/blog-files/3d-transforms/image-flip.html
http://www.webkit.org/blog-files/3d-transforms/image-flip.html
http://www.webkit.org/blog-files/3d-transforms/image-flip.html
http://www.webkit.org/blog-files/3d-transforms/image-flip.html
http://www.webkit.org/blog-files/3d-transforms/image-flip.html
http://www.webkit.org/blog-files/3d-transforms/image-flip.html
http://www.webkit.org/blog-files/3d-transforms/image-flip.html
http://www.webkit.org/blog-files/3d-transforms/image-flip.html
http://www.webkit.org/blog-files/3d-transforms/image-flip.html
http://www.webkit.org/blog-files/3d-transforms/image-flip.html
http://www.webkit.org/blog-files/3d-transforms/image-flip.html
http://www.webkit.org/blog-files/3d-transforms/image-flip.html
http://www.webkit.org/blog-files/3d-transforms/image-flip.html
http://www.webkit.org/blog-files/3d-transforms/image-flip.html
http://www.webkit.org/blog-files/3d-transforms/image-flip.html
http://www.webkit.org/blog-files/3d-transforms/image-flip.html
https://developer.mozilla.org/en-US/demos/detail/3d-image-transitions/launch
https://developer.mozilla.org/en-US/demos/detail/3d-image-transitions/launch
https://developer.mozilla.org/en-US/demos/detail/3d-image-transitions/launch
https://developer.mozilla.org/en-US/demos/detail/3d-image-transitions/launch
https://developer.mozilla.org/en-US/demos/detail/3d-image-transitions/launch
https://developer.mozilla.org/en-US/demos/detail/3d-image-transitions/launch
https://developer.mozilla.org/en-US/demos/detail/3d-image-transitions/launch
https://developer.mozilla.org/en-US/demos/detail/3d-image-transitions/launch
https://developer.mozilla.org/en-US/demos/detail/3d-image-transitions/launch
https://developer.mozilla.org/en-US/demos/detail/3d-image-transitions/launch
https://developer.mozilla.org/en-US/demos/detail/3d-image-transitions/launch
https://developer.mozilla.org/en-US/demos/detail/3d-image-transitions/launch
https://developer.mozilla.org/en-US/demos/detail/3d-image-transitions/launch
https://developer.mozilla.org/en-US/demos/detail/3d-image-transitions/launch
https://developer.mozilla.org/en-US/demos/detail/3d-image-transitions/launch
https://developer.mozilla.org/en-US/demos/detail/3d-image-transitions/launch
https://developer.mozilla.org/en-US/demos/detail/3d-image-transitions/launch
https://developer.mozilla.org/en-US/demos/detail/3d-image-transitions/launch
https://developer.mozilla.org/en-US/demos/detail/3d-image-transitions/launch
https://developer.mozilla.org/en-US/demos/detail/3d-image-transitions/launch
https://developer.mozilla.org/en-US/demos/detail/3d-image-transitions/launch
https://developer.mozilla.org/en-US/demos/detail/3d-image-transitions/launch
https://developer.mozilla.org/en-US/demos/detail/3d-image-transitions/launch
http://www.webkit.org/blog-files/3d-transforms/morphing-cubes.html
http://www.webkit.org/blog-files/3d-transforms/morphing-cubes.html
http://www.webkit.org/blog-files/3d-transforms/morphing-cubes.html
http://www.webkit.org/blog-files/3d-transforms/morphing-cubes.html
http://www.webkit.org/blog-files/3d-transforms/morphing-cubes.html
http://www.webkit.org/blog-files/3d-transforms/morphing-cubes.html
http://www.webkit.org/blog-files/3d-transforms/morphing-cubes.html
http://www.webkit.org/blog-files/3d-transforms/morphing-cubes.html
http://www.webkit.org/blog-files/3d-transforms/morphing-cubes.html
http://www.webkit.org/blog-files/3d-transforms/morphing-cubes.html
http://www.webkit.org/blog-files/3d-transforms/morphing-cubes.html
http://www.webkit.org/blog-files/3d-transforms/morphing-cubes.html
http://www.webkit.org/blog-files/3d-transforms/morphing-cubes.html
http://www.webkit.org/blog-files/3d-transforms/morphing-cubes.html
http://www.webkit.org/blog-files/3d-transforms/morphing-cubes.html
http://www.webkit.org/blog-files/3d-transforms/morphing-cubes.html
http://www.webkit.org/blog-files/3d-transforms/morphing-cubes.html
http://www.webkit.org/blog-files/3d-transforms/morphing-cubes.html
http://www.webkit.org/blog-files/3d-transforms/morphing-cubes.html
http://www.webkit.org/blog-files/3d-transforms/morphing-cubes.html
http://www.webkit.org/blog-files/3d-transforms/morphing-cubes.html
http://leaverou.github.com/prefixfree/)
http://leaverou.github.com/prefixfree/)
http://leaverou.github.com/prefixfree/)
http://leaverou.github.com/prefixfree/)
http://leaverou.github.com/prefixfree/)
http://leaverou.github.com/prefixfree/)
http://leaverou.github.com/prefixfree/)
http://leaverou.github.com/prefixfree/)
http://leaverou.github.com/prefixfree/)
http://leaverou.github.com/prefixfree/)
http://www.w3.org/TR/css3-transitions/
http://www.w3.org/TR/css3-transitions/
http://www.w3.org/TR/css3-transitions/
http://www.w3.org/TR/css3-transitions/
http://www.w3.org/TR/css3-transitions/
http://www.w3.org/TR/css3-transitions/
http://www.w3.org/TR/css3-transitions/
http://www.w3.org/TR/css3-transitions/
http://www.w3.org/TR/css3-transitions/
http://www.w3.org/TR/css3-transitions/
http://www.w3.org/TR/css3-transitions/
http://www.w3.org/TR/css3-transitions/
http://www.w3.org/TR/css3-transitions/
http://www.w3.org/TR/css3-transitions/
http://www.w3.org/TR/css3-transitions/

Siggraph 2012 Course: Graphics Programming for the Web (Canvas and CSS)

If animations using transitions are not sufficient, we can also create explicit animation of the
style attributes using keyframes.

<html>
<head>
<style type="text/css">
@-webkit-keyframes wobble {
0% {
-webkit-transform: scale3d(1,1,1) rotatez(@deg);
}
33% {
-webkit-transform: scale3d(1.2,1.2,1) rotatez(30@deg);
}
66% {
-webkit-transform: scale3d(1.2,1.2,1) rotateZ(-30deg);
}

100% {
-webkit-transform: scale3d(1,1,1) rotatez(-deg);

}

}</style>
</head>
<body>
<div style="width: 50px; height: 50px; position: relative; left:100; top: 25;
background-color:#CCCCFF;
-webkit-animation-name: wobble;
-webkit-animation-duration: 3s;
-webkit-animation-iteration-count: infinite;
-webkit-animation-direction: alternate;
-webkit-animation-timing-function: linear;">
Hello!
</div>
</body>
</html>

In the above example, we first create some keyframes (at 0%, 33%, 66% and 100% of the
animation duration). At each keyframe, we specify values of the style attributes that need

to change. The animation keyframes are then specified as the value of the animation-name
attribute, along with the duration of each cycle, the number of complete cycles (infinite for
continuous looping animation), whether to step forwards, backwards or foward and backward,
and the timing function (ease-in, ease-out, linear, etc.). The complete specifications for CSS
animations is available here: http://www.w3.0org/TR/css3-animations/.

A final note on the “planes in space” functionality is that soon browsers will be able to support
curved planes in space for placing block tags. Curved planes will be possible through the use of
CSS shaders, which are described in the next section.

More resources
General-purpose CSS animation: http://tinyurl.com/csswalk

Traditional animation principles implemented as CSS:

http://www.w3.org/TR/css3-animations/
http://www.w3.org/TR/css3-animations/
http://www.w3.org/TR/css3-animations/
http://www.w3.org/TR/css3-animations/
http://www.w3.org/TR/css3-animations/
http://www.w3.org/TR/css3-animations/
http://www.w3.org/TR/css3-animations/
http://www.w3.org/TR/css3-animations/
http://www.w3.org/TR/css3-animations/
http://www.w3.org/TR/css3-animations/
http://www.w3.org/TR/css3-animations/
http://www.w3.org/TR/css3-animations/
http://www.w3.org/TR/css3-animations/
http://www.w3.org/TR/css3-animations/
http://www.w3.org/TR/css3-animations/
http://tinyurl.com/csswalk
http://tinyurl.com/csswalk
http://tinyurl.com/csswalk
http://tinyurl.com/csswalk
http://tinyurl.com/csswalk
http://tinyurl.com/csswalk
http://tinyurl.com/csswalk
http://tinyurl.com/csswalk

Siggraph 2012 Course: Graphics Programming for the Web (Canvas and CSS)

http://coding.smashingmagazine.com/2011/09/14/the-quide-to-css-animation-principles-and-
examples/

Image Filters

Similar to the HTML5 Canvas, we can implement image filters using CSS. The image filters in
CSS (called “filter effects”) are essentially the same as those for SVG: a fixed set of image filters
applied to every pixel of the image. The proposed specification for CSS filter effects is https://
dvcs.w3.org/hg/FXTF/raw-file/tip/filters/index.html.

Like SVG, CSS filter effects support some hard-coded filter functions
(e.g. “brighten”, “sepia”, “grayscale”) that accept a few user parameters. The syntax is as simple
as specifying the filter attribute, like:

-webkit-filter: blur(2px) grayscale(l);

Note that multiple filter functions can be specified, and the order of the filter functions is
important.

The following link shows all the filters in action: http://htmI5-demos.appspot.com/static/css/
filters/index.html

Similar to SVG filters, the benefit of using filter effects through CSS instead of HTML5 Canvas is
improved performance: we do not need to iterate over every pixel in the image using Javascript,
and can exploit the parallel computation ability of modern GPUs. For this reason, if you wish

to use one of the filter effects in the specifications and CSS filter effects are supported by your
target browser, we recommend you use CSS filter effects instead of Javascript-coded HTML5
Canvas image manipulation.

General-Purpose CSS Shaders

The exciting development of CSS filter effects is that in addition to the fixed filters, the CSS filter
effects specification allows us to specify a custom shader as a filter. This is exciting because

it has the potential to open up the massive parallel computation available on most GPUs for
general-purpose computing via simple shader programs. These general-purpose programs
need not have anything to do with graphics, and the CSS shaders can be used for large-scale
parallel computation. Since this is a rather new specification, browser implementations that
support general purpose CSS shaders are not yet available (at the time of this writing). This
article gives a more in-depth description of CSS shaders: http://www.adobe.com/devnet/html5/
articles/css-shaders.html

As the above link illustrates, with CSS shaders we can apply vertex shaders to the grid of
polygons that is overlaid on the HTML element. The contents of the HTML element are
rendered as a texture map (filtered appropriately) onto grid. Through these shaders, we can
specify a filter that changes the position of the grid vertices, thereby creating curved planes in
space, as was mentioned before.

http://coding.smashingmagazine.com/2011/09/14/the-guide-to-css-animation-principles-and-examples/
http://coding.smashingmagazine.com/2011/09/14/the-guide-to-css-animation-principles-and-examples/
http://coding.smashingmagazine.com/2011/09/14/the-guide-to-css-animation-principles-and-examples/
http://coding.smashingmagazine.com/2011/09/14/the-guide-to-css-animation-principles-and-examples/
http://coding.smashingmagazine.com/2011/09/14/the-guide-to-css-animation-principles-and-examples/
http://coding.smashingmagazine.com/2011/09/14/the-guide-to-css-animation-principles-and-examples/
http://coding.smashingmagazine.com/2011/09/14/the-guide-to-css-animation-principles-and-examples/
http://coding.smashingmagazine.com/2011/09/14/the-guide-to-css-animation-principles-and-examples/
http://coding.smashingmagazine.com/2011/09/14/the-guide-to-css-animation-principles-and-examples/
http://coding.smashingmagazine.com/2011/09/14/the-guide-to-css-animation-principles-and-examples/
http://coding.smashingmagazine.com/2011/09/14/the-guide-to-css-animation-principles-and-examples/
http://coding.smashingmagazine.com/2011/09/14/the-guide-to-css-animation-principles-and-examples/
http://coding.smashingmagazine.com/2011/09/14/the-guide-to-css-animation-principles-and-examples/
http://coding.smashingmagazine.com/2011/09/14/the-guide-to-css-animation-principles-and-examples/
http://coding.smashingmagazine.com/2011/09/14/the-guide-to-css-animation-principles-and-examples/
http://coding.smashingmagazine.com/2011/09/14/the-guide-to-css-animation-principles-and-examples/
http://coding.smashingmagazine.com/2011/09/14/the-guide-to-css-animation-principles-and-examples/
http://coding.smashingmagazine.com/2011/09/14/the-guide-to-css-animation-principles-and-examples/
http://coding.smashingmagazine.com/2011/09/14/the-guide-to-css-animation-principles-and-examples/
http://coding.smashingmagazine.com/2011/09/14/the-guide-to-css-animation-principles-and-examples/
http://coding.smashingmagazine.com/2011/09/14/the-guide-to-css-animation-principles-and-examples/
http://coding.smashingmagazine.com/2011/09/14/the-guide-to-css-animation-principles-and-examples/
http://coding.smashingmagazine.com/2011/09/14/the-guide-to-css-animation-principles-and-examples/
http://coding.smashingmagazine.com/2011/09/14/the-guide-to-css-animation-principles-and-examples/
http://coding.smashingmagazine.com/2011/09/14/the-guide-to-css-animation-principles-and-examples/
https://dvcs.w3.org/hg/FXTF/raw-file/tip/filters/index.html.
https://dvcs.w3.org/hg/FXTF/raw-file/tip/filters/index.html.
https://dvcs.w3.org/hg/FXTF/raw-file/tip/filters/index.html.
https://dvcs.w3.org/hg/FXTF/raw-file/tip/filters/index.html.
https://dvcs.w3.org/hg/FXTF/raw-file/tip/filters/index.html.
https://dvcs.w3.org/hg/FXTF/raw-file/tip/filters/index.html.
https://dvcs.w3.org/hg/FXTF/raw-file/tip/filters/index.html.
https://dvcs.w3.org/hg/FXTF/raw-file/tip/filters/index.html.
https://dvcs.w3.org/hg/FXTF/raw-file/tip/filters/index.html.
https://dvcs.w3.org/hg/FXTF/raw-file/tip/filters/index.html.
https://dvcs.w3.org/hg/FXTF/raw-file/tip/filters/index.html.
https://dvcs.w3.org/hg/FXTF/raw-file/tip/filters/index.html.
https://dvcs.w3.org/hg/FXTF/raw-file/tip/filters/index.html.
https://dvcs.w3.org/hg/FXTF/raw-file/tip/filters/index.html.
https://dvcs.w3.org/hg/FXTF/raw-file/tip/filters/index.html.
https://dvcs.w3.org/hg/FXTF/raw-file/tip/filters/index.html.
https://dvcs.w3.org/hg/FXTF/raw-file/tip/filters/index.html.
https://dvcs.w3.org/hg/FXTF/raw-file/tip/filters/index.html.
https://dvcs.w3.org/hg/FXTF/raw-file/tip/filters/index.html.
https://dvcs.w3.org/hg/FXTF/raw-file/tip/filters/index.html.
https://dvcs.w3.org/hg/FXTF/raw-file/tip/filters/index.html.
https://dvcs.w3.org/hg/FXTF/raw-file/tip/filters/index.html.
https://dvcs.w3.org/hg/FXTF/raw-file/tip/filters/index.html.
https://dvcs.w3.org/hg/FXTF/raw-file/tip/filters/index.html.
https://dvcs.w3.org/hg/FXTF/raw-file/tip/filters/index.html.
https://dvcs.w3.org/hg/FXTF/raw-file/tip/filters/index.html.
http://html5-demos.appspot.com/static/css/filters/index.html
http://html5-demos.appspot.com/static/css/filters/index.html
http://html5-demos.appspot.com/static/css/filters/index.html
http://html5-demos.appspot.com/static/css/filters/index.html
http://html5-demos.appspot.com/static/css/filters/index.html
http://html5-demos.appspot.com/static/css/filters/index.html
http://html5-demos.appspot.com/static/css/filters/index.html
http://html5-demos.appspot.com/static/css/filters/index.html
http://html5-demos.appspot.com/static/css/filters/index.html
http://html5-demos.appspot.com/static/css/filters/index.html
http://html5-demos.appspot.com/static/css/filters/index.html
http://html5-demos.appspot.com/static/css/filters/index.html
http://html5-demos.appspot.com/static/css/filters/index.html
http://html5-demos.appspot.com/static/css/filters/index.html
http://html5-demos.appspot.com/static/css/filters/index.html
http://html5-demos.appspot.com/static/css/filters/index.html
http://html5-demos.appspot.com/static/css/filters/index.html
http://html5-demos.appspot.com/static/css/filters/index.html
http://html5-demos.appspot.com/static/css/filters/index.html
http://html5-demos.appspot.com/static/css/filters/index.html
http://www.adobe.com/devnet/html5/articles/css-shaders.html
http://www.adobe.com/devnet/html5/articles/css-shaders.html
http://www.adobe.com/devnet/html5/articles/css-shaders.html
http://www.adobe.com/devnet/html5/articles/css-shaders.html
http://www.adobe.com/devnet/html5/articles/css-shaders.html
http://www.adobe.com/devnet/html5/articles/css-shaders.html
http://www.adobe.com/devnet/html5/articles/css-shaders.html
http://www.adobe.com/devnet/html5/articles/css-shaders.html
http://www.adobe.com/devnet/html5/articles/css-shaders.html
http://www.adobe.com/devnet/html5/articles/css-shaders.html
http://www.adobe.com/devnet/html5/articles/css-shaders.html
http://www.adobe.com/devnet/html5/articles/css-shaders.html
http://www.adobe.com/devnet/html5/articles/css-shaders.html
http://www.adobe.com/devnet/html5/articles/css-shaders.html
http://www.adobe.com/devnet/html5/articles/css-shaders.html
http://www.adobe.com/devnet/html5/articles/css-shaders.html
http://www.adobe.com/devnet/html5/articles/css-shaders.html
http://www.adobe.com/devnet/html5/articles/css-shaders.html
http://www.adobe.com/devnet/html5/articles/css-shaders.html
http://www.adobe.com/devnet/html5/articles/css-shaders.html

Siggraph 2012 Course: Graphics Programming for the Web (WebGL)

WebGL

Zhenyao Mo, Kenneth Russell
Google, Inc.

Introduction

Stream Processing

Vertex and Fragment Shaders

A Concrete Example
Setting up WebGL
Loading Shaders
Loading Programs
Setting up Geometry
Drawing the Scene

Higher-Level Libraries

Achieving High Performance
Picking in Google Body

Particle Systems

Sprite Engines
Physical Simulation

Conclusion

Introduction

WebGL brings 3D graphics to the HTML5 platform. WebGL, in short, is an alternative rendering
context for the HTML5 Canvas element, which provides the OpenGL ES 2.0 API to JavaScript.

OpenGL, and OpenGL ES, supply a proven rendering model, but one which differs from other
graphics APIs on the Web. In OpenGL, OpenGL ES and WebGL, the triangle is the basic
drawing primitive. Data for many triangles is prepared once, but drawn many times. The data
uploaded to the graphics processing unit (GPU) includes concepts like vertex positions, colors,
textures, and more. Shaders -- small programs that execute directly on the GPU -- determine
the position of each triangle and the color of every pixel on the screen.

The WebGL, OpenGL ES and OpenGL APIs are developed by the Khronos Group, a non-
profit industry consortium creating open standards for the authoring and acceleration of parallel
computing, graphics, dynamic media, computer vision and sensor processing on a wide variety
of platforms and devices.

Siggraph 2012 Course: Graphics Programming for the Web (WebGL)

Stream Processing

WebGL exposes a stream processing model. Each point in 3D space has one or more streams
of data associated with it: for example, position, surface normal, color, or texture coordinate. In
OpenGL (and WebGL), these streams are called vertex attributes. These streams of data flow

through the vertex and fragment shaders.

Data stream 1

Vertex shader —— Fragment shader

Data stream 2

Vertex and Fragment Shaders

Vertex and fragment shaders are small, stateless programs which run on the GPU with a high
degree of parallelism. The vertex shader is applied to each vertex of each triangle. Its primary
goal is to output the location where the vertex should appear in the on-screen window. The
vertex shader may also output one or more additional values -- called varying variables -- to the
fragment shader.

For each triangle, the GPU figures out which pixels on the screen are covered by the triangle.
The GPU then runs the fragment shader on each of those pixels. At each pixel, the GPU
automatically blends the outputs of the vertex shader based on where the pixel lies within the
triangle. The fragment shader then determines the color of the pixel based on those inputs.

Vertex data is uploaded into one or more buffer objects which reside on the GPU. The vertex
attributes in the vertex shader are bound to the data in these buffer objects.

Siggraph 2012 Course: Graphics Programming for the Web (WebGL)

Buffer object

Positions

Colors

Surface normals

J

Vertex attribute 1

Vertex attribute 2

Vertex attribute 3

A Concrete Example

Now we’ll go through a concrete example, adapted from Giles Thomas’ Learning WebGL
Lesson 2. The code is checked in to the webglsamples project and can be viewed directly in a
WebGL-enabled browser. The goal of this example is to de-mystify WebGL by showing all of the

Vertex shader

steps necessary to draw a colored triangle on the screen.

The vertex shader for this example is very simple:

http://learningwebgl.com/blog/?p=134
http://learningwebgl.com/blog/?p=134
http://learningwebgl.com/blog/?p=134
http://learningwebgl.com/blog/?p=134
http://learningwebgl.com/blog/?p=134
http://learningwebgl.com/blog/?p=134
http://learningwebgl.com/blog/?p=134
http://code.google.com/p/webglsamples/
http://code.google.com/p/webglsamples/
http://code.google.com/p/webglsamples/
http://code.google.com/p/webglsamples/
http://webglsamples.googlecode.com/hg/hello-webgl/hello-webgl.html
http://webglsamples.googlecode.com/hg/hello-webgl/hello-webgl.html
http://webglsamples.googlecode.com/hg/hello-webgl/hello-webgl.html

Siggraph 2012 Course: Graphics Programming for the Web (WebGL)

attribute vec3 positionAttr;
attribute vec4 colorAttr;

varying vec4 vColor;

void main (void) {
gl Position = vec4 (positionAttr, 1.0);
vColor = colorAttr;

}

In this example, the vertex shader will be executed a total of three times, because we are only
drawing one triangle containing three vertices. In a typical application, thousands or tens of
thousands of triangles are typically drawn together.

The fragment shader for this example is also very simple:
precision mediump float;

varying vec4d vColor;
void main (void) {

gl _FragColor = vColor;
}

The value of the vColor varying variable comes from a weighted combination of the colors
specified at the three input vertices. Based on the location of the pixel within the triangle, the
GPU automatically blends the color that was specified at each vertex.

The fragment shader will be executed between a dozen to tens of thousands of times,
depending on the size of the canvas. Recall that the fragment shader executes at each pixel on
the screen covered by a given triangle.

The shader text for this example is embedded directly in the web page using script elements.

It is entirely up to the application how to manage the sources for its shaders. Script tags were
chosen to hold the shaders for this example for simplicity. A real world application might
download the shaders from the server using XMLHttpRequest, generate the source code for its
shaders using JavaScript code, or one of many other options.

<script id="shader-vs" type="x-shader/x-vertex">
attribute vec3 positionAttr;
attribute vec4 colorAttr;

</script>

<script id="shader-fs" type="x-shader/x-fragment">
precision mediump float;
varying vec4 vColor;

</script>

Setting up WebGL

Siggraph 2012 Course: Graphics Programming for the Web (WebGL)

Now we’ll look at how the example initializes WebGL as it begins to run.

var gl = null;

var contextNames = ["webgl", "experimental-webgl"];
for (var ii = 0; ii < contextNames.length; ++ii) {
try {
gl = canvas.getContext (contextNames[ii]) ;
if (gl)
break;
} catch (e) {
}
}
if ('gl) {
alert("Could not initialise WebGL, sorry :-("):
}

This isn’t the best error detection logic; it's deliberately kept short in order to keep the example
simple. Consult other examples in the webglsamples repository, such as the WebGL Aquarium,
for better references when building real applications. You should link to http://get.webgl.org/ if
your application’s initialization fails.

(Note the need to check for both the webgl and experimental-webgl context types. This

is a temporary situation while the WebGL specification is reaching a certain degree of
conformance across web browsers and operating systems. In the near future it is expected
that all web browsers supporting WebGL will begin to advertise the webgl context type, and the
experimental-webgl context type will no longer have to be queried by applications.)

Loading Shaders

The next step in a WebGL application is to load its shaders. A specific sequence of steps is
followed to do this:

Create the shader object — vertex or fragment.
Specify its source code.

Compile it.

Check whether compilation succeeded.

The complete source code for these steps follows. Some error checking is elided for brevity.

function getShader(gl, id) ({
var script = document.getElementById(id) ;
var shader;

if (script.type == "x-shader/x-vertex") {
shader = gl.createShader (gl.VERTEX SHADER) ;
} else if (script.type == "x-shader/x-fragment") {

shader = gl.createShader (gl.FRAGMENT SHADER) ;
}

gl.shaderSource (shader, script.text);

http://get.webgl.org/
http://get.webgl.org/
http://get.webgl.org/
http://get.webgl.org/
http://get.webgl.org/
http://get.webgl.org/
http://get.webgl.org/
http://get.webgl.org/

Siggraph 2012 Course: Graphics Programming for the Web (WebGL)

gl.compileShader (shader) ;

if (!gl.getShaderParameter (shader, gl.COMPILE STATUS)) {
alert(gl.getShaderInfolog (shader)) ;
return null;

}

return shader;

}

Note that the WebGL API calls (shaderSource, compileShader, etc.) match very closely the
written description of what needs to occur during loading of the shader.

Loading Programs

The next step is to construct a program object. A program object combines the vertex and
fragment shaders, and completely specifies how a piece of geometry is rendered. Again, a
specific sequence of steps is followed to load the program:

Load each shader separately.

Attach each to the program.

Link the program.

Check whether linking succeeded.

Prepare vertex attributes for later assignment.

The complete source code for these steps follows.

var program;
function initShaders () {
program = gl.createProgram() ;
var vertexShader = getShader(gl, "shader-vs");
gl.attachShader (program, vertexShader) ;
var fragmentShader = getShader(gl, "shader-£fs");
gl.attachShader (program, fragmentShader) ;
gl.linkProgram (program) ;
if (!'gl.getProgramParameter (program, gl.LINK STATUS))
alert("Could not initialise shaders");
gl .useProgram (program) ;
program.positionAttr =
gl.getAttriblLocation (program, "positionAttr");
gl.enableVertexAttribArray (program.positionAttr) ;
program.colorAttr =
gl.getAttribLocation (program, "colorAttr");
gl.enableVertexAttribArray (program.colorAttr) ;

Setting up Geometry

Siggraph 2012 Course: Graphics Programming for the Web (WebGL)

Now we need to set up the geometry that will be drawn to the screen. This step is independent
of the initialization of the shaders and program object; it could just as well be done before the
program was loaded. It is a two-step process; first a buffer object is allocated on the GPU,

and then the geometric data containing all of the vertex streams is uploaded. There are many
choices to make when deciding how to organize the geometry, including whether to use
interleaved or non-interleaved vertex data, using one or more buffer objects, where to place
vertex data within the buffer object, etc. As experience with the OpenGL and WebGL API

is gained, many of these decisions become more easily apparent. In general, it is strongly
desirable to use as few buffer objects as possible. Switching between them is expensive.

The complete code for the setup of this example’s geometry follows.

var buffer;

function initGeometry () {
buffer = gl.createBuffer()
gl.bindBuffer (gl.ARRAY BUFFER, buffer);

// Interleave and colors

var vertexData

// Vertex 1
0.0, 0.8,
// Vertex 1

1.0, 0.0, O.

// Vertex 2
-0.8, -0.8,
// Vertex 2
0.0,
// Vertex 3
0.8, -0.8,

// Vertex 3
0.0,

1;

1.0, 0.

0.0, 1.

vertex positions
= [
position
0.0,
Color
0, 1.0,
position
0.0,
color
0, 1.0,
position
0.0,
color
0, 1.0

gl.bufferData(gl.ARRAY_BUFFER,
new Float32Array (vertexData), gl.STATIC_DRAW) ;

}

This is, again, a very simple example. Most real applications would store complex models on
the server and transmit them using an efficient representation, such as that supplied by the

WebGL Loader project.

Drawing the Scene

At this point, all of the pieces are in place in order to draw the scene. The steps to do so are

very simple:

e Clear the viewing area.
e Set up vertex attribute streams.

e |ssue the draw call.

The complete code follows.

http://code.google.com/p/webgl-loader/
http://code.google.com/p/webgl-loader/
http://code.google.com/p/webgl-loader/
http://code.google.com/p/webgl-loader/

Siggraph 2012 Course: Graphics Programming for the Web (WebGL)

function drawScene () {

gl.viewport (0, 0, canvas.width, canvas.height);
gl.clear (gl.COLOR BUFFER BIT | gl.DEPTH_ BUFFER BIT);

gl.bindBuffer (gl.ARRAY BUFFER, buffer);

// There are 7 floating-point values per vertex
var stride = 7 * Float32Array.BYTES PER ELEMENT;

// Set up position stream
gl.vertexAttribPointer (program.positionAttr,
3, gl.FLOAT, false, stride, 0);
// Set up color stream
gl.vertexAttribPointer (program.colorAttr,
4, gl.FLOAT, false, stride,
3 * Float32Array.BYTES PER ELEMENT) ;

gl.drawArrays (gl.TRIANGLES, 0, 3);

That'’s it! The triangle now appears on the screen.

Higher-Level Libraries

Now that we've dragged you through a complete example, many libraries already exist to
make it easier to use WebGL. One list (not comprehensive) is maintained on the WebGL wiki
at http://www.khronos.org/webgl/wiki/User_Contributions#Frameworks. A few suggestions for

frameworks to look at:

Three.js (used in the Rome demo, mr. doob’s demos, and many others)
CubicVR (used in Mozilla’s WebGL demos such as No Comply)

TDL (used in the WebGL Aquarium and most of the other webglsamples demos)
CopperLicht (same developer as Irrlicht)

PhiloGL (focus on data visualization)

GLGE (used for early prototypes of Google Body)

ScenedJS (unique and interesting declarative syntax)

SpiderGL (lots of interesting visual effects)

Achieving High Performance

There are a few “big rules” associated with writing OpenGL programs. First and foremost is

to reduce the number of draw calls per frame. OpenGL'’s efficiency compared to many other
graphics APIs comes from its ability to send large amounts of geometry to the GPU with very
little overhead. Sending down small batches, or even worse, one or two triangles per draw call,

http://www.khronos.org/webgl/wiki/User_Contributions#Frameworks
http://www.khronos.org/webgl/wiki/User_Contributions#Frameworks
http://www.khronos.org/webgl/wiki/User_Contributions#Frameworks
http://www.khronos.org/webgl/wiki/User_Contributions#Frameworks
http://www.khronos.org/webgl/wiki/User_Contributions#Frameworks
http://www.khronos.org/webgl/wiki/User_Contributions#Frameworks
http://www.khronos.org/webgl/wiki/User_Contributions#Frameworks
http://www.khronos.org/webgl/wiki/User_Contributions#Frameworks
http://www.khronos.org/webgl/wiki/User_Contributions#Frameworks
http://www.khronos.org/webgl/wiki/User_Contributions#Frameworks
http://www.khronos.org/webgl/wiki/User_Contributions#Frameworks
http://www.khronos.org/webgl/wiki/User_Contributions#Frameworks
http://www.khronos.org/webgl/wiki/User_Contributions#Frameworks
http://www.khronos.org/webgl/wiki/User_Contributions#Frameworks
http://www.khronos.org/webgl/wiki/User_Contributions#Frameworks
http://www.khronos.org/webgl/wiki/User_Contributions#Frameworks
http://www.khronos.org/webgl/wiki/User_Contributions#Frameworks
https://github.com/mrdoob/three.js
https://github.com/mrdoob/three.js
https://github.com/mrdoob/three.js
http://ro.me
http://mrdoob.github.com/three.js/
http://mrdoob.github.com/three.js/
http://mrdoob.github.com/three.js/
http://mrdoob.github.com/three.js/
http://mrdoob.github.com/three.js/
http://mrdoob.github.com/three.js/
http://mrdoob.github.com/three.js/
http://www.cubicvr.org/
https://developer.mozilla.org/en-US/demos/detail/no-comply/launch
https://developer.mozilla.org/en-US/demos/detail/no-comply/launch
https://developer.mozilla.org/en-US/demos/detail/no-comply/launch
http://threedlibrary.googlecode.com
http://www.ambiera.com/copperlicht/
http://www.senchalabs.org/philogl/
http://www.glge.org/
http://www.scenejs.com/
http://spidergl.org/

Siggraph 2012 Course: Graphics Programming for the Web (WebGL)

does not give the GPU the opportunity to optimize the handling of many triangles at once.

In order to draw many triangles at once, it is typically necessary to sort the objects in the
scene by their rendering state: for example, objects using the same texture should be drawn
with consecutive draw calls, rather than drawing one object with texture 1, another object with
texture 2, and a third object with texture 1.

Objects should be sorted and drawn according to the following criteria, in decreasing order of
importance:

e Target framebuffer or context state
o Blending, clipping, depth test, etc.
e Program, buffer, or texture
o Switching these often requires a pipeline flush
e Uniforms and samplers
o Switching these is relatively cheap, modulo JavaScript overhead

(Thanks to Ben Vanik at Google for this information.)

Wherever possible, sort the objects in the scene ahead of time, and maintain the objects as a
sorted list for rendering purposes. Walking the object hierarchy and performing a sort of objects
per frame can cancel the gains from batching draw calls. Generate your content (3D models,
etc.) so that it can be easily batched; merge buffers, textures, etc.

In WebGL, all of the OpenGL “big rules” apply, along with another one: offload as much
JavaScript to the GPU as possible, within reason. Often the GPU can be used to rephrase a
computation that would otherwise need to be done in JavaScript, and you can achieve not only
better parallelism but often better performance by doing so. The following examples show how
this rule is applied in the context of a few real-world examples.

Picking in Google Body

(Thanks to the Google Body team for this information.)

Google Body is a browser for the human anatomy. Originally developed at Google Labs, it is
now available as Zygote Body, from the company that developed the 3D models. The models in
this application are highly detailed -- over a million triangles -- yet selection is very fast. One can
click any body part to highlight it and see its name.

How can picking be implemented? One could consider doing ray-casting in JavaScript. When
the mouse is clicked, set up a ray starting at the eye point, going through the near plane of

the “camera”, and intersect that ray with all of the triangles in the scene. One could attempt to
do quick discards if the ray doesn’t intersect an object’s bounding box, to avoid ray-triangle tests
for objects that are obviously missed by the ray. Regardless, this is still a lot of math to do in
JavaScript.

Instead, Google Body uses the GPU to implement picking. When the model is loaded, each
organ is assigned a different color. When the mouse is clicked, the model is rendered offscreen
with a different shader than usual. This shader draws each shape with its preassigned color,

http://www.zygotebody.com/
http://www.zygotebody.com/
http://www.zygotebody.com/

Siggraph 2012 Course: Graphics Programming for the Web (WebGL)

without any texturing, lighting, or transparency. A threshold is used to determine whether to
draw translucent layers during this process; layers which are “too transparent” to pick are simply
not drawn. After this render pass is completed, the color under the mouse pixel is read back to
the CPU using readPixels. The same technique works at different levels of granularity; for
example, each triangle, rather than each object, could be assigned a different color to achieve
finer detail when picking. The following three screenshots show the picking process while
different layers of the model are visible.

Note that this technique uses the GPU for what it is best at -- rendering. It essentially converts
the problem of picking into one of rendering. Despite the need to perform a readback from the
GPU to the CPU at the end of the algorithm, the performance gains from using the GPU are
worth it.

Siggraph 2012 Course: Graphics Programming for the Web (WebGL)

Particle Systems

Particle systems are a technique commonly used to draw graphical effects like explosions,
smoke, clouds, and dust.

The most obvious way to implement a particle system is to compute the positions of the
particles on the CPU, upload the vertices to the GPU, and draw them in a single draw call. This
technique can work for small particle systems, but does not scale well because many vertices
are uploaded to the GPU each frame. Additionally, mathematical operations are not yet as fast
in JavaScript as they are in C or C++. A different technique is desired.

Gregg Tavares has developed a particle system demonstration in the WebGL demo repository
which animates roughly 2000 particles at 60 frames per second. All of the animation math is

performed on the GPU. Each particle’s motion is defined by an equation: initial position, velocity,
acceleration, spin, and lifetime. When the particle is created, these parameters are set up

once and never modified afterward. Each frame, only one parameter needs to be sent from

the CPU to the GPU: the current time. The vertex shader evaluates the equation of motion and
moves the particle into its desired location for the current frame. This technique ensures that the
absolute minimum amount of JavaScript work is done per frame.

https://cvs.khronos.org/svn/repos/registry/trunk/public/webgl/sdk/demos/google/particles/index.html
https://cvs.khronos.org/svn/repos/registry/trunk/public/webgl/sdk/demos/google/particles/index.html
https://cvs.khronos.org/svn/repos/registry/trunk/public/webgl/sdk/demos/google/particles/index.html
https://cvs.khronos.org/svn/repos/registry/trunk/public/webgl/sdk/demos/google/particles/index.html
https://cvs.khronos.org/svn/repos/registry/trunk/public/webgl/sdk/demos/google/particles/index.html
https://cvs.khronos.org/svn/repos/registry/trunk/public/webgl/sdk/demos/google/particles/index.html
http://www.khronos.org/webgl/wiki/Demo_Repository
http://www.khronos.org/webgl/wiki/Demo_Repository
http://www.khronos.org/webgl/wiki/Demo_Repository
http://www.khronos.org/webgl/wiki/Demo_Repository
http://www.khronos.org/webgl/wiki/Demo_Repository
http://www.khronos.org/webgl/wiki/Demo_Repository

Siggraph 2012 Course: Graphics Programming for the Web (WebGL)

Nihilogic’s Worlds of WebGL demonstration shows a similar particle system technique. In this
demonstration, particles assemble to form various shapes, falling to the floor between scenes
and animating smoothly between them. The animation is done similarly to Gregg Tavares’
particle system above. For each scene, random positions for the particles are chosen at setup
time. The time parameter interpolates between two vertex attribute streams at any given time:
one stream contains the particle positions on the floor, and the other the particle positions for
the current shape. Once the current shape has been assembled, the next interpolation target
becomes the particles on the floor again. JavaScript does almost no computation.

Sprite Engines

In roughly early 2011, Facebook released a sprite engine benchmark called JSGameBench
comparing various techniques for rendering animated sprites within a web browser, including
moving around DOM elements and drawing with both 2D Canvas and WebGL. Sprites are
generally similar to particle systems, but are terminology more commonly used when authoring
certain kinds of 2D games. JSGameBench doesn’t appear to be under active development any
more, but some lessons can be learned about its structure and performance characteristics.

At the time JSGameBench was released, its WebGL backend performed one draw call per
sprite. It seemed that drawing the entire sprite field with one draw call would be an obvious
performance win, so a prototype sprite engine library was developed to test this hypothesis.

The first question was whether it was even possible to draw all of the sprites at once; they

use alpha blending, so the order they are drawn is important. It’s a little known fact that
OpenGL actually guarantees the order the triangles are drawn in when glDrawArrays and
glDrawElements are called. Apparently GPUs contain quite a bit of silicon -- the Render Output
unit, or ROP -- to provide this guarantee; thanks to Nat Duca at Google for this information.
Therefore it was technically possible to draw the entire sprite field at once, since the order the
sprites were drawn to the screen would be consistent from frame to frame.

The next question was how to merge together the sprites’ multiple images. One obvious way
would be to put all of the sprites’ images into a single texture, so that the draw call would
reference only one texture. This seemed like an inflexible solution, since it would be bounded
by the maximum size of an individual texture. Instead, the desired solution was to pass down
multiple textures to the fragment shader, and have the shader choose which one to sample for
the sprite’s image.

Conceptually, we would like to send down a uniform array of samplers, e.g., uniform
sampler2D textures[4], and compute an index into this array. Unfortunately, the WebGL
shading language, which is essentially the same as the OpenGL ES shading language,
doesn't allow this kind of indexing expression in a fragment shader. The only kind of indexing
expression allowed is one involving constants and loop indices.

The first attempt at the texture selection fragment shader looked like this. It passed down a
vector of coefficients for each vertex, which selected one of the four incoming textures.

gl FragColor =
(texture2D (u_texturel, v_texCoord) * v_textureWeights.x +
texture2D (u_texturel, v_texCoord) * v_textureWeights.y +

http://www.nihilogic.dk/labs/worlds_of_webgl/
http://www.nihilogic.dk/labs/worlds_of_webgl/
http://www.nihilogic.dk/labs/worlds_of_webgl/
http://www.nihilogic.dk/labs/worlds_of_webgl/
http://www.nihilogic.dk/labs/worlds_of_webgl/
https://github.com/facebook/jsgamebench

Siggraph 2012 Course: Graphics Programming for the Web (WebGL)

texture2D (u_texture2, v_texCoord) * v_textureWeights.z +
texture2D (u_texture3, v_texCoord) * v_textureWeights.w);

This worked, but unfortunately, the resulting demo was slower than the existing WebGL
backend of JSGameBench -- about 66% of the performance. Experiments were done to remove
the "explosion" sprite, which is the largest of all the sprites (256x256, filling a 2048x2048
texture), and selecting the sprites from the remaining three sheets. This yielded a significant
speedup, which strongly indicated that the texture bandwidth on the card was being exhausted.

Nat Duca suggested to use a series of if-tests in the fragment shader to sample the desired
texture. Previous experience had been to avoid if-tests in shaders at all costs; in earlier work,
every time an if-test in a shader had been replaced with a non-branching operation like a clamp
or step, performance had improved. Nat indicated that on modern cards, if the branch will go the
same way over large regions (which it will in this case; it's constant across the entire surface of
the sprite), it will work well. The fragment shader was rewritten as follows:

vecd4 color;
if (v_textureWeights.x > 0.0)

color = texture2D (u_texturel, v_texCoord) ;
else if (v_textureWeights.y > 0.0)

color = texture2D (u_texturel, v_texCoord);
else if (v_textureWeights.z > 0.0)

color = texture2D (u_texture2, v_texCoord);
else // v_textureWeights.w > 0.0

color = texture2D (u_texture3, v_texCoord);
gl _FragColor = color;

This technique worked well; on the development machine, it rendered 250% or more sprites at
the same frame rate than the WebGL backend of JSGameBench at the time. JSGameBench
was subsequently updated to use similar batching techniques.

The source code for, and more details on, this sprite engine prototype are available in the
WebGL samples project in the sprites subdirectory; see the documentation and live demo.

Physical Simulation

WebGL supports floating-point textures as an extension, meaning that every texel can store one
or more floating-point values. The fact that the GPU can operate on so much floating-point data
at once means that it is possible to perform advanced techniques in WebGL such as physical
simulation. Any iterative computation where each step relies only on nearby neighbors is a good
candidate for moving to the GPU.

Evgeny Demidov has developed several demonstrations showing how to simulate waves,
interference patterns, 2D fluid dynamics and other techniques in WebGL.

Evan Wallace has developed demonstrations utilizing floating-point textures to simulate
interactive water in a pool and even do ray tracing in WebGL.

http://code.google.com/p/webglsamples/
http://code.google.com/p/webglsamples/
http://code.google.com/p/webglsamples/
http://code.google.com/p/webglsamples/
http://webglsamples.googlecode.com/hg/sprites/readme.html
http://webglsamples.googlecode.com/hg/sprites/index.html
http://webglsamples.googlecode.com/hg/sprites/index.html
http://webglsamples.googlecode.com/hg/sprites/index.html
http://www.ibiblio.org/e-notes/webgl/gpu/contents.htm
http://madebyevan.com/
http://madebyevan.com/webgl-water/
http://madebyevan.com/webgl-water/
http://madebyevan.com/webgl-water/
http://madebyevan.com/webgl-water/
http://madebyevan.com/webgl-water/
http://madebyevan.com/webgl-water/
http://madebyevan.com/webgl-water/
http://madebyevan.com/webgl-water/
http://madebyevan.com/webgl-water/
http://madebyevan.com/webgl-water/
http://madebyevan.com/webgl-water/
http://madebyevan.com/webgl-water/
http://madebyevan.com/webgl-path-tracing/
http://madebyevan.com/webgl-path-tracing/
http://madebyevan.com/webgl-path-tracing/

Siggraph 2012 Course: Graphics Programming for the Web (WebGL)

Conclusion

WebGL is an evolving specification and ecosystem. We look forward to your participation in the
community!

WebGL landing page at the Khronos Group
WebGL wiki

WebGL specification (editor’s draft)
WebGL developers’ mailing list (for discussing the use of WebGL)
WebGL public mailing list (for discussing the specification)

http://www.khronos.org/webgl/
http://www.khronos.org/webgl/
http://www.khronos.org/webgl/
http://www.khronos.org/webgl/
http://www.khronos.org/webgl/
http://www.khronos.org/webgl/
http://www.khronos.org/webgl/
http://www.khronos.org/webgl/
http://www.khronos.org/webgl/
http://www.khronos.org/webgl/
http://www.khronos.org/webgl/
http://www.khronos.org/webgl/
http://www.khronos.org/webgl/
http://www.khronos.org/webgl/wiki
http://www.khronos.org/webgl/wiki
http://www.khronos.org/webgl/wiki
http://www.khronos.org/registry/webgl/specs/latest/
http://www.khronos.org/registry/webgl/specs/latest/
http://www.khronos.org/registry/webgl/specs/latest/
http://groups.google.com/group/webgl-dev-list
http://groups.google.com/group/webgl-dev-list
http://groups.google.com/group/webgl-dev-list
http://groups.google.com/group/webgl-dev-list
http://groups.google.com/group/webgl-dev-list
http://groups.google.com/group/webgl-dev-list
http://groups.google.com/group/webgl-dev-list
http://www.khronos.org/webgl/public-mailing-list/
http://www.khronos.org/webgl/public-mailing-list/
http://www.khronos.org/webgl/public-mailing-list/
http://www.khronos.org/webgl/public-mailing-list/
http://www.khronos.org/webgl/public-mailing-list/
http://www.khronos.org/webgl/public-mailing-list/
http://www.khronos.org/webgl/public-mailing-list/

SIGGRAPH2012 ./’0

Graphics Programming on the Web

WebCL Course Notes
Siggraph 2012

Mikaél Bourges-Sévenier’
Motorola Mobility, Inc.

Abstract

This document introduces WebCL [1], a new standard under development by the Khronos Group, for high-
performance computing in web browsers. Since WebCL wraps OpenCL, the course starts by reviewing important
OpenCL [2] concepts. Next, we detail how to program with WebCL in the browser and on devices such as GPUs.
Finally, we discuss WebCL — WebGL [3] interoperability and provide complete examples of moving from WebGL
shaders to WebCL. Last, we provide tips and tricks to ease such translation and to optimize WebCL code performance.

! mikeseven@acm.org

Table of Content

O VAT = 1 T =Y o T o 3
2 Glossary and CONVENTIONSccceeeeiiiriemnncirieennneereeenneeeseennsseessennnssssseensssssssesnsssssseennssssssennnsnnans 3
3 Thinking in parallel......eieiiiiiiiie e 4
L/ N 0 T Y=Y [0 My o T=T 4 VoY oV 14 Lo e [=] ISP 4
5 Programming With WEDCL.........cceue o iiiireiiiiceiccerreeenecsrrenneeesrenanneeseenassssseennsssssseennssssssennnsnnnns 7
5.1 Host/Browser side 7

51.1 Platform layer. 8

512 Runtime layer. 9
5.2 Device side 15
6 Interoperability With WeDGL..........ccccviiiiiiiiiiiiiiiinniinciiininsnsssnssnree s s ssasssssnees 16
6.1 Fun with 2 triangles 17

6.1.1 General CL-GL interoperability algorithm 18

6.1.2 Using shared textures 18

6.1.3 Using shared buffers 19

6.1.4 Example 20
6.2 Other applications 22
7 TIPS AN TFICKS ceeerrreeeeiiiiiiiiiiiiiiieerieeeeeereieeiseeesessteeeessnnsssnnnns 22
7.1 From GLSL to OpenCL C 23
7.2 Barriers 23
7.3 Local work-group size 23
7.4 Learn parallel patterns! 23
8 WebCL implementationscuueeeciiiiiiiiiiiiiiiiieeeennneneesiesssseeseeesssnnssssssssssssssssssssssssssnnnnssssssnnss 23
L T o =1 ¢ T of 4= PPPTPPN 24
APPENAIX A CL-GL COUR ...iiiiiirrrennneniiiiiiieiiiesieeeeessnnnssssssssssssssesseesssssssssssssssssssssssssssssssssnnnnsssssnnss 25
A.1 Graphics object 25
A2 Compute object 27
A3 Mandelbulb kernel (direct conversion) 31
A4 Mandelbulb kernel (optimized) 34
Appendix B OpenCL and CUDA terminolOgYcccciiirueiiiiiienniiiiriennsceiiennsiesseennsessssnnsssssssennssanes 37
31 o[- 1 SOOI 39
Specifications 39
Programming guides 39
Books 39
WebCL prototypes 39
Articles and Presentations 39

>
SIGGRAPH2012(_4§

1 Whatis WebCL?

In short, WebCL is to OpenCL what WebGL is to OpenGL. WebCL is a JavaScript API over OpenCL API;
Khronos Group is defining all these international standards. Historically, OpenGL was defined as a standard for
hardware accelerated graphics, hence Graphics Language. OpenGL was first a fixed pipeline a programmer could
change various states to produce images. Then, OpenGL pipeline became programmable using shaders, pieces of C like
code that can be inserted at some points of the OpenGL rendering pipeline.

As the need for more complex applications arise, programmers realized that shaders could be used for more
general programming problems, taking advantage of the massively parallel nature of GPUs; this became known as
GPGPU. But shaders can only provide limited features for such applications.

Few years ago, Apple proposed OpenCL to the Khronos Group, a more general framework for computing, hence
the term Compute Language. Not only OpenCL allows usage of GPUs but also any devices that has a driver in the
machine: CPUs, DSPs, accelerators, and so on.

It is important to note that OpenCL doesn’t provide any rendering capability, unlike OpenGL; it only processes
data, lots of data. The source of such data could be OpenGL buffers such as vertex buffers, pixel buffers, render
buffers, and so on.

To understand WebCL, it is necessary to understand the OpenCL programming model.

2 Glossary and conventions

Work-item The basic unit of work of an OpenCL device

Work-group Work-items execute together as a work-group

Kernel The code of a work-item, a C99 function

Program A collection of kernels and other functions, same as a dynamic library

Context The environment within which work-items executes. This includes devices, their memories, their

command queues, and so on

In this course, we will use the following conventions:
* Code is a yellow box
All lines are numbered

o WebCL/OpenCL keywords and methods are in bold red
o Comments are in light green
o Language keywords are in bold dark purple
o Strings are in blue
1 __kernel
2 void multiply(__global const float *a, // a, b, c values are in global memory

¢ The method console.log() is simplified to log().
e All WebCL calls throw exceptions (unlike WebGL that return error codes). For simplicity, we may omit
try/catch in this document, but you should not!

[

* OpenCL qualifiers start with __ (two). For example, one could use _ kernel or kernel

interchangeably. In this document, we always use _ kernel.
* We use interchangeably CL for OpenCL and WebCL, GL for OpenGL ES 2.x and WebGL.
* OpenCL files end with extension ‘.cl’. On web pages, we use <script type = “x-webcl”>, although both

are not defined by any standard.

:’n
SIGGRAPH2012v(_4

3 Thinking in pafallel

Programming a massively parallel device is challenging and, for many developers, may require learning new
programming skills. By massively parallel, we mean that many hardware-processing units run at once or, said
differently, many hardware threads are running concurrently. While CPUs tend to have 2, 4, or 8 cores, GPUs can have
thousands of cores. Even on mobile devices, GPUs with hundred of cores are coming. For web developers used to
sequential event-based programs, with JavaScript language not providing threading support, it is a radical shift.

The following example shows the main idea:

* A traditional loop over a (large) set of data can be replaced by a data-parallel kernel

* Each work-item runs a copy of the kernel function.

¢ With n work-items, the computation is executed in 1 pass vs. n passes with a traditional loop
The OpenCL concepts are introduced in the next section.

3 // in JavaScript

4

5 function multiply(a, b, n)

6 {

7 var c=[1];

8 for(var i = 0; i < n; i++)

9 c[i] = a[i] * b[i];

10

11 return c;

12 }

1 // in OpenCL

2

3 __kernel

4 void multiply(_ global const float *a, // a, b, c values are in global memory
5 __global const float *b,

6 __global float *c, int n)

7 {

8 int id = get_global_id(0); // work-item globallD
9 if(id >= n) return; // make sure work-item don’t read/write past array size
10 c[id] = a[id] * b[id];

11 }

Code 1 — Representing a JavaScript method into a WebCL kernel.

4 OpenCL memory model

Before we enter into OpenCL programming details, it is important to understand its platform model:
* A Host contains one or more Compute Devices. A Host has its own memory.
¢ Each Compute Device (e.g. CPU, GPU, DSP, FPGA...) is composed of one or more compute units (c.g.
cores). Each Compute Device has its own memory.
* Each Compute Unit is divided in one or more Processing Elements (e.g. hardware threads). Each
processing element has its own memory.
In general, we will refer to Host for the device onto which the WebCL program is executed (i.e. within the
browser). We refer to Device for a compute device onto which an OpenCL Kernel is executed. Hence, a CPU can be
both a Host and a Compute Device.

SIGGRAPH2012 »30

Compute Device

ompute Unit

rocessing Element

Host

Figure 1 - OpenCL platform model

OpenCL defines 4 types of memory spaces within a Compute Device:

* Global memory — corresponds to the device RAM. This is where input data are stored. Available to all
work groups/items. Similar to system memory over a slow bus, rather slow memory. Not cached.

¢ Constant memory — cached global memory

* Local memory — high-speed memory shared among work-items of a compute unit (i.e. for a work-
group). Similar to L1 cache. Reasonably fast memory.

* Private memory — registers of a work-item. Very fast memory.

However, private memory is small and local memory is often no more than 64 KB. As a result, programmer must
choose carefully which variables leave in a memory space for the best performance / memory access performance
tradeoff.

Another type of memory is Texture Memory, which is similar to Global Memory but is cached, optimized for 2D
spatial locality, and designed for streaming reads with constant latency. In other words, if your device has image
support and your data can fit in texture memory, it may be better than using buffers in global memory.

Private Memory j Private Memory Private Memory J Private Memory

Workgroup 1 Workgroup N

I !

Local Memory Local Memory
Global Memory / Constant and Texture Caches

Compute Device

Command queues
and
API calls

Host Memory

Host

>
SIGGRAPH2012y(_4)

Figure 2 — OpenCL memory model

Finally, at an even lower level, work-items are scheduled as a group called warp (NVidia) or wavefront (AMD);
this is the smallest unit of parallelism on a device. Individual work-items in a warp/wavefront start together at the same
program address, but they have their own address counter and register state and are therefore free to branch and execute
independently [8]. Threads on a CPU are generally heavyweight entities and context switches (when the operating
system swap two threads on and off execution channels) are therefore expensive. By comparison, threads on a GPU
(i.e. work-items) are extremely lightweight entities. Since registers are allocated to active threads, no swapping of
registers and state occurs between GPU threads. Once threads complete, its resources are de-allocated.

Each work-item has a global ID into an N-Dimensional index space, where N can be 1, 2 or 3. An N-dimensional
range (or NDRange) is defined by an array of N values specifying the extent of the index space in each dimension
starting at an offset F (0 by default). Within a work-group, a work-item also has a local ID.

Work-group (Wx, Wy)

- Giwidth
0

.Y

Lwidth

A

Lheight

R N R N R e N Y N L7 Ve

Gheighl T T TR T \

A RVl RV N L7 N R Vel L Ve S R Ve

§
2

T T Lwidth-1

Work-item (Lx, Ly)

i
‘/\‘/\‘/\‘/\‘/\‘/\\/\‘/\o“

s
s
s

4]
s
s
s
s

AV N Ve N A7 N LYk Vel R Ve N L7 N L Vo
AN A Ve AV N A YN L el kYol L Yo ik ¥
AV N RV N R 72 Ve N BV e N B9 N BV e N BV
AN AV N AV N L7 N L 7l R Ve il | Vo S L Vol

Lhelght -1
s Y.

\4 [height -1
Gwictn-1

Work-group

Figure 3 — Global and Local IDs for a 2D problem.

Using a 2D example, as depicted in Figure 3, with a global NDRange of size [Gyidin, Gheignd] and local NDRange of
size [Lyidth» Licigntl>
1. Indexes always go from 0 to range-1 in each dimension
2. locallD of work-item at index (I, 1y) is Iy + Iy * Lyiqn
3. globallD of work-item at index (g, g,) is g« + gy * Gyian
To favor memory coalescing (i.e. the device accesses memory in a batch rather than individual accesses that
would require serialized accesses to memory), it is useful to keep:

1. The Gyjgn of the problem as a multiple of the maximum work-group size, eventually adding extra
columns with appropriate padding. The maximum work-group size is given by
c.KERNEL_WORK _GROUP_SIZE

2. The Lqn of a work-group as a multiple of the warp/wavefront size. This value is given by
cl.LKERNEL_PREFERRED _WORK_GROUP_SIZE MULTIPLE

Both limits can be queried on a WebCLKernel object once it is created. They are extremely important for
maximum throughput.

Host and devices communicate via buffers defined in an OpenCL context. Commands are sent to devices via
command-queues. Commands are used for memory transfers from host and devices, between memory objects in a
device, and to execute programs.

5 Programming

with WebCL

Programming with WebCL is composed of 2 parts:
* The host side (e.g. in the web browser) that sets up and controls the execution of the program

* The device side (e.g. on a GPU) that runs computations i.e. kernels.

5.1 Host/Browsers

ide

:’b
SIGGRAPH20124/_4

All WebCL methods may throw exceptions (rather than error codes as in WebGL), so you should wrap your
WebCL methods with try/catch, even though for simplicity we will omit them in this document.

try {
webclobject.method (..

}
catch(ex) {

log(ex);
}

Nouds W=

-) i

// an exception occurred

Code 2 — Always wrap WebCL method calls with try/catch!

Unlike WebGL, WebCL is a global object so that it can be used in a Web page or within a Web Worker.
Consequently, we first need to create a WebCL object:

| 1 var cl = new WebCL(); |
Code 3 — Creating the WebCL object.
The remainder of this section will detail how to use all WebCL objects in Figure 4.
WebCLPlatform WebCLDevice WebCLExtension
WebCL T T —
‘—|—> WebCLContext
WebCLMemoryObject WebCLProgram CommandQueue Event Sampler
{abstract}
T — T — T —
WebCLBuffer WebCLImage WebCLKernel
T T —

Figure 4 — WebCL objects.

The typical workflow is described in Figure 5 and consists in 3 phases:
¢ Initialize the platform layer

* Load and compile programs/kernels
* Interact with devices through the runtime layer

SIGGRAPH2012 »:/‘

Figure 5 — OpenCL startup sequence

5.1.1 Platform layer
The OpenCL platform layer implements platform-specific features. They allow applications to query OpenCL
devices, device configuration information, and to create OpenCL contexts using one or more devices.

1 // let’s get all platforms on this machine

2 var platforms = cl.getPlatforms();

3

4 // dump information about each platform

5 for (var i = 0, il = platforms.length; i < il; ++i) {

6 var p = platforms[i];

7 var profile = p.getInfo(WebCL.PLATFORM PROFILE) ;

8 var version = p.getInfo(WebCL.PLATFORM VERSION) ;

9 var extensions = p.getInfo(WebCL.PLATFORM EXTENSIONS) ;

10

11 // list of devices on this platform p

12 var devices = p.getDevices(WebCL.DEVICE TYPE ALL);

13

14 // find appropriate device

15 for (var j = 0, jl = devices.length; j < jl; ++j) {

16 var d = devices[]j];

17 var devExts = d.getInfo(WebCL.DEVICE_EXTENSIONS);

18 var devGMem = d.getInfo(WebCL.DEVICE_GLOBAL_MEM SIZE);
19 var devLMem = d.getInfo(WebCL.DEVICE_LOCAL_MEM SIZE);

20 var devCompUnits = d.getInfo(WebCL.DEVICE_MAX_ COMPUTE_UNITS);
21 var dev_hasImage = d.getInfo(WebCL.DEVICE_ IMAGE_SUPPORT);
22 var devHasImage = d.getInfo(WebCL.DEVICE_ IMAGE_SUPPORT);
23

24 // select device that match your requiremenents

25

>
SIGGRAPH2012(_4§

28 // assuming we found the best device, we can create the context
29 var context = cl.createContext({

30 ‘platform’: platform,

31 ‘device’: device,

32})i

Code 4 — Query WebCL platforms and devices features.

In general, to ensure your algorithm is portable across various devices (even on the same machine!), it is necessary
to know details about features on each device. For example, if you require image support, ensure the device you choose
support them and up to what size, and how many images can be supported at once. If your kernel requires atomics,
make sure device’s extensions return ‘cl_khr int64 base atomics’. On embedded devices, knowing that ‘cl_khr {p16°
is supported (i.e. 16-bit floats or half-floats) can lead to twice more performance. When optimizing algorithms,
knowing the maximum workgroup size, the number of work-items per dimension, the number of parameters to a kernel
function, the maximum size of a memory object, and other features, are crucial elements to adapt your applications at
runtime.

On the other end, if you just want to use the best device on the machine and let the browser find it for you, you

could just do:

1 var ctx = cl.createContext({

2 deviceType : cl.DEVICE_TYPE_GPU

3 })i

4

5 // query the platform/device found by the browser
6 try {

7 devices = ctx.getInfo(cl.CONTEXT DEVICES);

8 catch(ex) {

9 throw "Error: Failed to retrieve compute devices for context!";
10 }

11

12 var device = null, platform = null;

13

14 for(var i=0, il=devices.length; i < il; ++i) {

15 device_type = devices[i].getInfo(cl.DEVICE_TYPE);
16 if (device_type == cl.DEVICE_TYPE_GPU) {

17 device = devices[i];

18 break;

19 }

20 }

21

22 if (device)

23 platform = device.getInfo(cl.DEVICE_PLATFORM);

Code 5 — Let the browser figures the best platform/device for a context.

Note: in practice, the algorithm in Code 5 is often simplified with

1 var devices = ctx.getInfo(cl.CONTEXT_DEVICES);
2 var device = devices[0];
3 var platform = device.getInfo(cl.DEVICE_PLATFORM);

but this assumes the machine has only 1 GPU device!

Now that we have created a WebCLContext object, we need to set it up for our program and run it!

5.1.2 Runtime layer
The runtime layer manages OpenCL objects such as command-queues, memory objects, program objects, kernel
objects in a program and calls that allow you to enqueue commands to a command-queue such as executing a kernel,
reading, or writing a memory object.
WebCL defines the following objects:
¢ Command Queues
* Memory objects (Buffer and Images)
¢ Sampler objects describe how to sample an image being read by a kernel
* Program objects that contain a set of kernel functions identified with _ kernel qualifier in the program
source

>
SIGGRAPH20124)

* Kernel objects encapsulate the specific _ kernel functions declared in a program source and its
argument values to be used when executing the __ kernel function

* Event objects used to track the execution status of a command as well as to profile a command

¢ Command synchronization objects such as Markers and Barriers

5.1.2.1 Loading and building programs

WebCL, like WebGL 1.0, assumes program to be provided in source code form i.e. a large string. Currently, any
WebCL device is required to have an internal compiler. The source code is first loaded to the device, then compiled. As
with any compiler, CL defines standard compilation options including the standard —D (predefined name and value)
and -1 (include directory). Code 6 shows how to properly catch compilation errors using
WebCLProgram.getBuildInfo().

1 // Create the compute program from the source strings

2 program = ctx.createProgram(source);

3

4 // Build the program executable with relaxed math flag

5 try {

6 program.build(device, "-cl-fast-relaxed-math");

7 } catch (err) {

8 throw 'Error building program: ' + err

9 + program.getBuildInfo(device, cl.PROGRAM_ BUILD_LOG));
10 }

Code 6 — Load and build a CL program.

Note: WebCL currently only supports source code as a set of strings.

At this point, our program is compiled, and contains one or more kernel functions. These kernel functions are the
entry points of our program, similar to entry points of a shared library. To refer to each kernel function, we create a

WebCLKernel object:
1 // Create the compute kernels from within the program
2 kernel = program.createKernel(‘kernel_ function_name’);

Code 7 — Create a kernel object for each kernel function in the program.

In the next section, we will discover how to pass arguments to the kernel functions.

5.1.2.2 Passing arguments to kernels
A kernel function may have one or more arguments, like any function. Since JavaScript only offers the type
Number for numerical values, we need to pass the type of such value to the kernel object for each argument. For other
type of values, we must use WebCL objects:
* WebCLBuffer and WebCLImage that wrap a Typed Array [1]
* WebCLSampler for sampling an image

5.1.2.3 Creating memory objects
A WebCLBuffer object stores a one-dimensional collection of elements. Elements of a buffer can be scalar type
(e.g. int, float), vector data type, or user-defined structure.

1 // create a 1D buffer

2 var buffer = ctx.createBuffer(flags, sizeInBytes, optional srcBuffer);

Flag Description

c.MEM_READ WRITE Default. Memory object is read and written by kernel

c.MEM_WRITE ONLY Memory object only written by kernel

c.MEM_READ ONLY Memory object only read by kernel

cLMEM_USE HOST PTR Implementation uses storage memory in srcBuffer. srcBuffer must
be specified.

cLMEM_ALLOC HOST PTR Implementation requests OpenCL to allocate host memory.

cLMEM_COPY_HOST PTR Implementation request OpenCL to allocate host memory and copy

10

}«
SIGGRAPH20124 ’ 4

data from srcBuffer memory. srcBuffer must be specified.

Reading from a WRITE_ONLY memory object, or Writing to a READ _ONLY memory object, is undefined.
These flags are mutually exclusive.

srcBuffer must be a Typed Array already allocated by the application and sizeInBytes > srcBuffer.byteLength.

MEM _USE HOST PTR is mutually exclusive with MEM_ALLOC HOST PTR and
MEM_COPY_HOST PTR. However, MEM_COPY_HOST _PTR can be specified with MEM_ALLOC_HOST PTR.
On AMD and NVidia GPUs and on some operating systems, using MEM_ALLOC HOST PTR may result in pinned
host memory to be used, which may result in improved performance [8][9].

A sub-buffer can be created from an existing WebCLBuffer object as a new WebCLBuffer object.

1 // create a sub-buffer
2 var subbuffer = buffer.createSubBuffer(flags, offset, size);

Note: only reading from a buffer object and its sub-buffer objects or reading from multiple overlapping sub-buffer
objects is defined. All other concurrent reading or writing is undefined.

A WebCLImage is used to store a 1D, 2D, or 3D dimensional texture, render-buffer, or image. The elements of an
image object are selected from a predefined list of image formats. However, currently, WebCL only supports 2D
images.

// create a 32-bit RGBA WebCLImage object
// first, we define the format of the image
var InputFormat = {

'order' : cl.RGBA,

'data_type' : cl.UNSIGNED_INT8,

'size': [image_width, image_height],

'rowPitch': image_pitch

}i

// Image on device
var image = ctx.createImage(cl.MEM _READ ONLY | cl.MEM USE_HOST PTR, format, imageBuffer);

HFROUOOJOUd WN -

= o

‘order' refers to the memory layout in which pixel data channels are stored in the image. 'data_type' is the type of
the channel data type.

'size' refers to the image size.

'rowPitch’ refers to the scan-line pitch in bytes. If imageBuffer is null, it must be 0. Otherwise, it must be at least
image width * sizeInBytesOfChannelElement, which is the default if rowPitch is not specified.

imageBuffer is a Typed Array that contain the image data already allocated by the application.
imageBuffer.byteLength >= rowPitch * image height. The size of each element in bytes must be a power of 2.

A WebCLSampler describes how to sample an image when the image is read in a kernel function. It is similar to

WebGL samplers.
1 // create a sampler object
2 var sampler = ctx.createSampler(normalizedCoords, addressingMode, filterMode);

normalizedCoords is c. TRUE or true indicates image coordinates specified are normalized.

addressingMode indicated how out-of-range image coordinates are handled when reading an image. This can be
set to CL_ADDRESS MIRRORED REPEAT, CL ADDRESS REPEAT, CL ADDRESS CLAMP TO EDGE,
CL_ADDRESS_CLAMP and CL_ADDRESS_NONE.

filterMode specifies the type of filter to apply when reading an image. This can be cL.FILTER NEAREST or
clLFILTER LINEAR.

5.1.2.4 Passing arguments to a kernel

Passing arguments to a kernel function is complicated by JavaScript un-typed nature: JavaScript provides a
Number object and there is no way to know if this is a 32-bit integer, a 16-bit short, a 32-bit float, and so on. In fact,
JavaScript numbers are typically 64-bit double. As a result, developers must provide the type of arguments used in a
kernel function.

11

=
‘/‘

SIGGRAPH2012

The WebCLKernel.setArg() method has two definitions: one for scalar and vector types and one for memory
objects (buffers and images) and sampler objects. Table 1 provides the relationships between OpenCL C types and
values used in kernel methods’ arguments and setArg() arguments.

Values referring to local memory use the special type cl.type. LOCAL MEMORY_SIZE because local variables
can’t be initialized by host or device but host can tell the device how many bytes to allocate for a kernel argument.

As a rule of thumb, scalar values are passed by value directly in setArg(). Buffers/Images/Vectors values are
passed by commands to transfer their host memory to the device memory.

1 // Sets value of kernel argument idx with value of scalar/vector type
2 kernel.setArg(idx, value, type);
3
4 // Sets value of kernel argument idx with value as memory object or sampler
5 kernel.setArg(idx, a_webCLObject);
Code 8 — WebCLKernel.setArg() definition
For example,
1 // Sets value of argument 0 to the integer value 5
2 kernel.setArg(0, 5, cl.type.INT);
3
4 // Sets value of argument 1 to the float value 1.34
5 kernel.setArg(l, 1.34, cl.type.FLOAT);
6
7 // Sets value of argument 2 as a 3-float vector
8 // buffer should be a FloatBuffer
9 kernel.setArg(2, buffer, cl.type.FLOAT | cl.type.VEC3);
10

11 // Sets value of
12 kernel.setArg(3,

14 // Allocate 4096
15 kernel.setArg(4,

argument 3 to a buffer (same for image and sampler)
buffer);

bytes of local memory for argument 4
4096, cl.LOCAL MEMORY_SIZE);

Code 9 — Setting kernel arguments.

Kernel argument type setArg() value setArg() cl.type Remarks

char, uchar scalar CHAR, UCHAR 1 byte

short, ushort scalar SHORT, USHORT 2 bytes

int, uint scalar INT, UINT 4 bytes

long, ulong scalar LONG, ULONG 4 bytes

float scalar FLOAT 4 bytes

half, double scalar HALF, DOUBLE No on all
implementations
2 bytes (half), 8 bytes
(double)

<char...double>N WebCLBuffer VECN N=2,3,4,8,16
May be null if global or
constant value

char, ..., double * WebCLBuffer May be null if global or
constant value

image2d t WebCLImage

sampler_t WebCLSampler

__local LOCAL _MEMORY _SIZE Size initialized in kernel

Table 1 — Relationships between C types used in kernels and setArg()’s cl.type.*

If the argument of a kernel function is declared with the _ constant qualifier, the size in bytes of the memory
object cannot exceed c. DEVICE. MAX CONSTANT BUFFER_SIZE.

Note 1: OpenCL allows passing structures as byte arrays to kernels but WebCL currently doesn’t for portability.
The main reason is that endianness between host and devices may be different and this would require developers to
format their data for each device’s endianness even on the same machine.

12

>
SIGGRAPH2012(_4§

Note 2: all WebCL API calls are thread-safe, except kernel.setArg(). However, kernel.setArg() is safe as long as
concurrent calls operate on different WebCLKernel objects. Behavior is undefined if multiple threads call on the same
WebCLKernel object at the same time.

5.1.2.5 Controlling device execution with command queues

Operations on WebCL objects such as memory, program and kernel objects are performed using command
queues. A command queue contains a set of operations or commands. Applications may use multiple independent
command queues without synchronization as long as commands don’t apply on shared objects between command
queues. Otherwise, synchronization is required.

Commands are queued in order but execution may be in order (default) or out of order. This means that if a
command-queue contains command A and command B, an in-order command-queue object guarantees that command
B is executed when command A finishes. If an application configures a command-queue to be out-of-order, there is no
guarantee that commands finish in the order they were queued. For out-of-order queues, a wait for events or a barrier
command can be enqueued in the command-queue to guarantee previous commands finish before the next batch of
commands is executed. Out-of-order queues are an advanced topic we won’t cover in this course. Interested readers
should refer to Derek Gerstmann Siggraph Asia 2009 on Advanced OpenCL Event Model Usage [20]. Moreover,
device support for out-of-order queues is optional in OpenCL and many current drivers don’t support it. It is useful to
test for out-of-order support and, if an exception is thrown, then create an in-order queue.

// Create an in-order command queue (default)
var queue = ctx.createCommandQueue(device);

// Create an in-order command queue with profiling of commands enabled
var queue = ctx.createCommandQueue(device, cl.QUEUE_PROFILING_ENABLE);

// Create an out-of-order command queue
var queue = ctx.createCommandQueue(device, cl.QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE) ;

OO WN =

Note: a command queue is attached to a specific device. And multiple command queues can be used per device.
One application is to overlap kernel execution with data transfers between host and device [8]. Figure 6 shows the
timing benefit if a problem could be separated in half:

* The first half of the data is transferred from host to, taking half the time of the full data set. Then kernel is
executed, possibly in half time needed with the full data set. And finally result is transferred back to device in
half the time of the full result set.

* Just after the first half is transferred, the second half is transferred from host to device, and the same process
is repeated.

Single queue

_ Compute on Device Copy Device to Host

Multiple queues

) Copy Half Device
_ Gompute on Device to Host
Compute on Device (G \RETIDEIED
to Host

Figure 6 — Using multiple command-queues for overlapped data transfer.

5.1.2.6 Command-queue execution
Once a set of commands have been queued, WebCL offers two ways to execute the command-queue:

// execute a task
queue.enqueueTask(kernel);

// execute a NDRange

>
SIGGRAPH20124/_4

5 queue.enqueueNDRange (kernel, offsets, globals, locals); |
With enqueueTask(), the kernel is executed using a single work-item. This is a very restricted form of
enqueueNDRange().

enqueueNDRange() has first parameters:

¢ kernel — the kernel to execute

e offsets — offsets to apply to globals. If null, then offsets=[0, 0, 0]

* globals — the problem size per dimension

* locals — the number of work-items per work-group per dimension. If null, the device will choose the
appropriate number of work-items

Recall Figure 3 where globals and locals relationships are depicted. If we want to execute a kernel over an image

of size (width, height), then globals may be [width, height] and locals may be [16, 16].

Since enqueueNDRange() will fail if locals size is more than cLKERNEL WORK_GROUP_SIZE, in practice, it

may be useful to do

LoOoJOULHd WN -

locals[0] = kernel.getWorkGroupInfo(device, cl.KERNEL PREFERRED WORK_GROUP_SIZE MULTIPLE);
locals[1l] = kernel.getWorkGroupInfo(device, cl.KERNEL_WORK_GROUP_SIZE) / locals[O0];
globals[0] = locals[0] * divUp(width, locals[0]);

globals[1l] = locals[l] * divUp(height, locals[1]);

// Helper to get next up value for integer division of x/y
function divUp(x, y) {

return (x 3y ==0) ?2 (x /y) : (x/ y+ 1);
}

Code 10 — A way to optimally setup locals and globals NDRanges.

5.1.2.7 Command Synchronization

Nearly all commands available in WebCLCommandQueue class have two final parameters:

* event list —an array of WebCLEvents

* event— an event returned by the device to monitor the execution status of a command

By default, event_list and event are null for a command, meaning that the command is executed as blocking the

host thread until it is queued in the device’s command queue. If a programmer doesn’t want to block the host thread

while a command is being executed, the device can return an event and the host code can register a callback to be

notified once the command complete.

WoOoJOULbd W -

// Enqueue kernel
try {
kernel_event=new cl.WebCLEvent();
queue.enqueueTask(kernel, null, kernel_event);
} catch(ex) {
throw "Couldn't enqueue the kernel. "+ex;

}

// Set kernel event handling routines
try {

kernel_event.setCallback(cl.COMPLETE, kernel complete, "The kernel finished successfully.");
} catch(ex) {

throw "Couldn't set callback for event. "+ex;

}

// Read the buffer
var data=new Float32Array(4096);
try {
read_event=new cl.WebCLEvent();
queue.enqueueReadBuffer(clBuffer, false, 0, 4096*4, data, null, read event);
} catch(ex) {
throw "Couldn't read the buffer. "+ex;

}

// register a callback on completion of read_event
read_event.setCallback(cl.COMPLETE, read_complete, “Read complete”);

// wait for both events to complete
queue.waitForEvents([kernel event, read event]);

// kernel callback
function kernel complete(event, data) {

14

:’>
SIGGRAPH2012(_4

33 // event.status = cl.COMPLETE or error if negative

34 // event.data is null

35 // data should contain "The kernel finished successfully."
36 }

37

38 // read buffer callback
39 function read complete(event, data) {

40 // event.status = cl.COMPLETE or error if negative

41 // event.data contains a WebCLMemoryObject with values from device
42 // data contains “Read complete”

43 }

Code 11 —Using WebCLEvent callbacks.

In Code 11, for the commands we wish to get notified on their cl. COMPLETE status, we first create a
WebCLEvent object, pass it to the command, then register a JavaScript callback function.

Note 1: the last argument of WebCLEvent.setCallback() can be anything. And this argument is passed untouched
as the last argument of the callback function.

Note 2: in the case of enqueue Read/Write WebCLBuffers or WebCLImages, as in line 22, clBuffer ownership is
transferred from host to device. Thus, when read_complete() callback is called, cIBuffer ownership is transferred back
from device to host. This means that once the ownership of clBuffer is transferred (line 22), the host cannot access or
use this buffer any more. Once the callback is called, line 40, the host can use the buffer again.

5.1.2.8 Profiling commands
To enable timing of commands, one creates a command-queue with option cl. QUEUE PROFILING ENABLE.
Then, WebCLEvents can be used to time a command. Code 12 shows how to profile an enqueueReadBuffer()

command.

1 // Create a command queue for profiling

2 try {

3 queue = context.createCommandQueue(device, cl.QUEUE_PROFILING_ENABLE);
4 } catch(ex) {

5 throw "Couldn't create a command queue for profiling. "+ex;

6 }

7

8 // Read the buffer with a profiling event

9 var prof_ event=new cl.WebCLEvent();

10 try {

11 queue.enqueueReadBuffer(data_buffer, true, 0, data.byteLength, data, null, prof event);
12 } catch(ex) {

13 throw "Couldn't read the buffer. "+ex;

14 }

15

16 // Get profiling information in nanoseconds

17 time_start = prof event.getProfilingInfo(cl.PROFILING COMMAND START);
18 time_end = prof_event.getProfilingInfo(cl.PROFILING_COMMAND_END) ;

19 total_time = time_end - time_start;

Code 12 — How to profile a command.

Note: timestamps are given in nanoseconds (10 seconds).
Likewise, to profile the duration of a kernel:

// Enqueue kernel
try {

queue.enqueueNDRangeKernel (kernel, null, globals, locals, null, prof_event);
} catch(ex) {

throw "Couldn't enqueue the kernel. "+ex;

}

AU W

Code 13 — Profiling a kernel.

5.2 Device side

Kernels are written in a derivative of C99 with the following caveats:
* A file may have multiple _kernel functions (similar to a library with multiple entry points)
* No recursion since there is no call stack on devices
¢ All functions are inlined to the kernel functions
* No dynamic memory (e.g. malloc(), free()...)

15

SIGGRAPHQOQ»/"‘

* No function pointer

* No standard libc libraries (e.g. memcpy(), stremp()...)
* No standard data structures (except vector operations)
* Helper functions

)

O O O O O

o

Barriers

Work-item functions

Atomic operations

Vector operations

Math operations and fast native (hardware accelerated) math operations
IEEE754 floating-point

16-bit floats and doubles (optional)

* Built-in data types

o
o
o

8, 16, 32, 64-bit values
Image 2D (and 3D but not in WebCL 1.0), Sampler, Event
2,3, 4, 8, 16-component vectors

* New keywords

o
o
o

Function qualifiers: __ kernel
Address space qualifiers: _ global, local, constant, private (default),
Access qualifiers: __read only, write only, read write,

* Preprocessor directives (#define, #pragma)

Appendices A.3 and A.4 provide examples of kernels.

6 Interoperability with WebGL

Recall that WebCL is for computing, not for rendering. However, if your data already resides in the GPU and you
need to render it, wouldn’t it be faster to tell OpenGL to use it rather than reading it from the GPU memory to CPU

memory and send it again to OpenGL on your GPU? This is where WebGL comes in.
Since WebCL is using data from WebGL, the WebGL context must be created first. Then, a shared WebCL
context can be created. This GL share group object manages shared GL and CL resources such as

¢ Textures objects — contain texture data in image form,

* Vertex buffers objects (VBOs) — contains vertex data such as coordinates, colors, and normal vectors,

* Renderbuffer objects — contain images used with GL framebuffer objects.

16

SIGGRAPH2012 s;‘

Figure 7 — Typical algorithm for WebCL — WebGL applications

6.1 Fun with 2 triangles

Applications such as image processing and ray tracing produce an output image whose pixels are drawn onto the
screen. For such applications, it suffices to map the output image onto 2 unlit screen-aligned triangles rendered by GL.
A compute kernel provides more flexible ways to optimize generic computations than a fragment shader. More
importantly, texture memory is cached and thus provides a faster way to access data than regular (global) memory.
However, in devices without image memory support, one should use WebCLBuffers and update GL textures with Pixel
Buffer Objects.

In this section, we use Iiligo Quilez excellent ShaderToy’s Mandelbulb fragment shader [24] converted as a CL
kernel, depicted in Figure 8. The whole WebGL scene consists in 2 textured triangles filling a canvas. WebCL
generates the texture at each frame. Therefore, for a canvas of dimension [width, height], WebCL will generate width *
height pixels. We will detail each step and the full program is given in Appendix A. In [24], you can find more cool
shaders that you can easily convert by the following the guidelines for this sample.

y
A
canvas 1 0
1
»X
-1 -
\/
B
1 height-1

WebGLTexture/WebCLImage

Figure 8 — Two triangles filling the canvas to draw a WebCL generated image.

17

SIGGRAPHQOQ./’Q

6.1.1 General CL-GL interoperability algorithm
Since CL uses GL buffers for compute, WebGL context must first be initialized and then WebCL context is
created sharing that WebGL context. Once both contexts are initialized, it is possible to create shared objects by
creating first the WebGL object, then the corresponding WebCL object from the WebGL object.
The general algorithm is as follows:

1 function Init_GL() {

2 // Create WebGL context

3 // Init GL shaders

4 // Init GL buffers

5 // Init GL textures

6 }

7

8 function Init CL() {

9 // Create WebCL context from WebGLContext

10 // Compile programs/kernels

11 // Create command queues

12 // Create buffers

13 }

14

15 function Create shared CLGL_objects {

16 // Create WebGL object glObj (vertex array, texture, renderbuffer)
17 // Create WebCL object clObj from WebGL object glObj
18 }

19

20 // called during rendering, possibly at each frame
21 // or in a separate Web Worker

22 function Execute_kernel(..) {

23 // Make sure all GL commands are finished
24 gl.flush();

25

26 // acquire shared WebCL object

27 queue.enqueueAcquireGLObjects (clObj);

28

29 // Execute CL kernel

30 // set global and local parameters

31 try {

32 queue.enqueueNDRangeKernel (kernel, null, global, local);
33 } catch (err) {

34 throw "Failed to enqueue kernel! " + err;
35 }

36

37 // Release CL object

38 queue.enqueueReleaseGLObjects (clObj);

39

40 // make sure all CL commands are finished
41 queue.flush();

42 }

43

44 // This is the main rendering method called at
45 // each frame

46 function display(timestamp) {

47 // Execute some GL commands

50 Execute_kernel(..);

52 // Execute more CL and GL commands

Code 14 — General algorithm for WebCL-WebGL interoperability.

The remainder of this section will focus on how to create shared CLGL objects and how to use them.

6.1.2 Using shared textures
Initialize a WebCLImage object from a WebGLImage object as follows:

// Create OpenGL texture object

Texture = gl.createTexture();

gl.bindTexture(gl.TEXTURE_2D, Texture);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE _MIN_FILTER, gl.NEAREST);

U WN =

18

P
SIGGRAPH2012(_4§

6 gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, TextureWidth, TextureHeight, 0, gl.RGBA,
gl.UNSIGNED BYTE, null);

7 gl.bindTexture(gl.TEXTURE_2D, null);

8

9 // Create OpenCL representation of OpenGL texture

10 try {

11 clTexture = ctx.createFromGLTexture2D(cl.MEM_WRITE_ONLY, gl.TEXTURE_2D, 0, Texture);

12 }

13 catch(ex) {

14 throw "Error: Failed to create WebCLImage. "+ex;

15 }

16

17 // To use this texture, somewhere in your code, do as usual:
18 glBindTexture(gl.TEXTURE_2D, Texture)

Code 15 — Initialize a WebCLImage object from a WebGLImage object.

Set the WebCLImage as an argument of your kernel:

1 kernel.setArg(0, clTexture);
2 kernel.setArg(l, TextureWidth, cl.type.UINT);
3 kernel.setArg(2, TextureHeight, cl.type.UINT);

Finally, here is how to use this WebCLImage inside your kernel code:

1 __kernel

2 void compute(_ write_only image2d_t pix, uint width, uint height)
3 {

4 const int x = get_global_ id(0);

5 const int y = get_global_id(1l);

6

7 // compute pixel color as a float4

8

9 write_imagef (pix, (int2)(x,y), color);

10 }

Code 16 — Using a WebCLImage data inside a kernel.

Note: it should be possible to use write imagei() or write imageui() with int4 colors. However, at the time of
writing (May 2012), this doesn’t seem to work with latest AMD and NVidia drivers. The code presented in this section
is the only way I found to work with textures between CL and GL.

6.1.3 Using shared buffers
A WebCLBuffer is created from a WebGLBuffer as follows. On line 6, it is important to specify the correct
sizeInBytes of the buffer.

1 // create a WebGLBuffer

2 pbo = gl.createBuffer();

3 gl.bindBuffer(gl.ARRAY BUFFER, pbo);

4

5 // buffer data

6 gl.bufferData(gl.ARRAY BUFFER, sizeInBytes, gl.DYNAMIC_ DRAW);
7 gl.bindBuffer(gl.ARRAY BUFFER, null);

8

9 // Create WebCLBuffer from WebGLBuffer

10 try {

11 clPBO = context.createFromGLBuffer(cl.MEM WRITE_ONLY, pbo);
12 }

13 catch(ex) {

14 throw "Error: Failed to create WebCLBuffer. "+ex;

15 }

Code 17 — Using a WebCLImage data inside a kernel.

Since a GL ARRAY_ BUFFER can be used for vertices, normals, colors, texture coordinates, texture data, and
more, WebCL can be used to schedule processing of these buffers.

If the device doesn’t support texture interoperability between CL and GL, a buffer can be used to update a
WebGLImage sub-texture as follows with the assumption that WebCLBuffer contains RGBA values for each pixel.

// Create OpenGL texture object

Texture = gl.createTexture();

gl.bindTexture(gl.TEXTURE_2D, Texture);

gl.texParameteri(gl.TEXTURE 2D, gl.TEXTURE MAG FILTER, gl.NEAREST);
gl.texParameteri(gl.TEXTURE 2D, gl.TEXTURE MIN FILTER, gl.NEAREST);

U WN =

19

>
SIGGRAPH2012v(_4

A

gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, TextureWidth, TextureHeight, 0, gl.RGBA,
gl.UNSIGNED BYTE, null);
gl.bindTexture(gl.TEXTURE_2D, null);

// To render using this texture

gl.bindTexture(gl.TEXTURE_2D, Textureld);

gl.bindBuffer (gl.PIXEL UNPACK BUFFER, pbo);

gl.texSubImage2D(gl.TEXTURE_2D, 0, 0, 0, TextureWidth, TextureHeight, gl.RGBA, gl.UNSIGNED_BYTE,
null);

Code 18 — Updating a texture from a WebGLBuffer

6.1.4 Example

The following example consists of 2 module objects, whose code is given in Appendix A:
* Graphics — encapsulates WebGL calls
¢ Compute — encapsulates WebCL calls
The code is rather large for just setting up WebCL and WebGL but, fear not, this is just boilerplate you can reuse!
The main method works as follows:
* Create a Canvas object
¢ Instantiate Graphics and Compute objects
* Launch the main rendering method
e If the window is resized, we call Graphics to configure the shared GL texture. Then, we call
Compute to configure the CL texture from this GL texture.
* At each frame, we reset the kernel argument with the current timestamp in seconds. Then, the
kernel is executed.
* Finally, Graphics renders the frame

WCoOoJOUbd W -

var COMPUTE_KERNEL_ID = "mandelbulb.cl"; // <script> id

var COMPUTE_KERNEL_NAME = "compute"; // name of _ kernel
var Width;

var Height;

var Reshaped = true;

var log = console.log;

/*
* reshape() is called if document is resized
*/
function reshape(evt) {
Width = evt.width;
Height = evt.height;
Reshaped = true;

}

(function main() {
log('Initializing');

document.setTitle("Mandelbulb demo");
var canvas = document.createElement("mycanvas", Width, Height);

// install UX callbacks
document.addEventListener('resize', reshape);

// init WebGL
var gfx=Graphics();
try {
gfx.init(canvas);
}
catch(err) {
alert('[Error] While initializing GL: '+err);
gfx.clean();
return;

}

// init WebCL
var compute=Compute();
try {
compute.init(gfx.gl(), COMPUTE KERNEL_ID, COMPUTE_ KERNEL NAME);
}
catch(err) {
alert('[Error] While initializing CL: '+err);

20

SIGGRAPH2012»/”

44 compute.clean();

45 return;

46 }

47

48 // render scene

49 var startTime=-1;

50 var fpsFrame=0, fpsTo=0;

51

52 (function update(timestamp) {

53 if (timestamp) {

54 if(startTime==-1) {

55 startTime=fpsTo=timestamp;

56 }

57 var ltime = timestamp-startTime;

58 }

59

60 // reinit shared data if document is resized
61 if (Reshaped) {

62 log('reshaping texture');

63 try {

64 var glTexture=gfx.configure shared_data(Width,Height);
65 var clTexture=compute.configure_shared_data(gfx.gl(), glTexture);
66 Reshaped=false;

67 }

68 catch(err) {

69 alert('[Error] While reshaping shared data: '+ex);
70 return;

71 }

72 }

73

74 // set kernel arguments

75 compute.resetKernelArgs(ltime/1000.0, Width, Height);
76

77 // compute texture for this timestamp

78 try {

79 compute.execute_kernel (gfx.gl());

80 }

81 catch(err) {

82 alert('[Error] While executing kernel: '+ex);
83 return;

84 }

85

86 // render scene with updated texture from CL
87 try {

88 gfx.display(ltime);

89 }

90 catch(err) {

91 alert('[Error] While rendering scene '+err);
92 return;

93 }

94

95 // Calculate framerate

96 fpsFrame++;

97 var dt=timestamp - fpsTo;

98 if(dt>1000) {

99 var ffps = 1000.0 * fpsFrame / dt;

100 log('myFramerate: " + ffps.toFixed(l) + " fps");
101 fpsFrame = 0;

102 fpsTo = timestamp;

103 }

104

105 requestAnimationFrame (update);

106 NO;

107 1HO;

Code 19 — Main method for CL-GL program.

The kernel for such applications has the form:

__kernel
void compute(_ write only image2d_t pix, const float time)
{

const int x = get_global_ id(0);

const int y = get_global_id(1l);

const int x1 = get_local_id(0);

AU WN -

21

>
SIGGRAPH2012¢_4)

7 const int yl = get_local_id(1l);

8 const int tid = xl+yl*get local size(0); // local work-item ID
9 const int width = get global_size(0);

10 const int height = get global size(1l);

11

12 // init local memory

13 -

14 // perform interesting computations for pixel (x,y)
15 .

16 // write (r,g,b,a) value at pixel (x,y)

17 write imagef(pix, (int2)(x,y), rgba);

18 }

Code 20 — Kernel for texture-based rendering.

Note 1: we don’t pass the size of the shared texture since the dimension of our problem is the full size of the
texture itself. In other words, when executing the kernel with enqueueNDRange(), the globals argument is [width,
height], and that’s what we retrieve in lines 9 and 10 in Code 20.

Note 2: for this example, we only pass the timestamp of the current frame to the kernel. For user interactivity, one
should also pass mouse coordinates, window size, and other user/application attributes.

In Appendix, we provide the fragment shader code of the Mandelbulb shader by Iiigo Quilez [24], as well as the
direct transformation to OpenCL and an optimized OpenCL version. We chose this example because the ray-marching
algorithm (also known as sphere tracing [25]) used to render the mandelbulb fractal requires lots of operations per
pixel; a good candidate for CL optimizations. Note that this is not necessarily the fastest way to render such
mathematical objects. On our machine, this leads to 6 fps for WebGL version [24], 8 fps for non-optimized OpenCL
version (Appendix A.2), and 12 fps for the optimized OpenCL version (Appendix A.4).

6.2 Other applications

In general, CL applications perform many matrix operations, whether the result is to be rendered directly onto the
screen (e.g. in a texture) or not. For example, the famous N-body simulation calculates at each frame the position of
astronomical objects, which are then rendered by GL [23]. An array of structures that contains position and other
attributes is shared between host and device; the device performing all the calculations of the interactions between
objects.

CL can also share vertex buffers and render buffers with GL. This allows developers to do all kind of complex
geometry and special effects that can be inserted in GL’s rendering pipeline.

7 Tips and tricks

NVidia and AMD excellent programming guides [8][9] provide lots of tips to optimize OpenCL programs. In our
experience, we recommend following this strategy:
¢ Use Host code for serial code, use Device code for parallel code
* Write your code in serialized form (i.e. test it on a host CPU) and identify the areas that are good
candidates for data-parallel optimizations
o As arule of thumb: identify where iterations are repeated on data, these are good candidates
for data-parallel optimizations
* In your kernel, initialize first local memory with data from global memory that will be used often in
your algorithm
¢ Group memory transfers together, this favors memory coalescing
¢ Identify where synchronization between work-items of the same work-group is necessary
* Atthe end of your kernel, write results from local memory back to global memory
* Rewrite your algorithm to minimize control flow divergence (i.e. if, switch, for, do, while). If threads in
the same warp/wavefront take different execution paths, these execution paths will be serialized, thereby
reducing throughput until the execution paths converge again.

22

>
SIGGRAPH2012(_4§

7.1 From GLSL to OpenCL C

In converting GLSL shader to OpenCL C, we recommend following these guidelines:
* GLSL’s vecN type are changed to OpenCL’s floatN type
o Initializations in OpenCL are: (floatN)(vall,...,valN) instead of vecN(vall,...,vaIN) in GLSL
* by default all floating point values are double in CL, make sure to add ‘f* at the end.
¢ out arguments of methods must be pointers

¢ if numerical precision is not too important, compile with —cl-fast-relaxed-math, -cl-mad-enable, and use
native_* functions (i.e. native_sin() instead of sin()).
* Use rsqrt() instead of 1.0f/sqrt()

7.2 Barriers

Barriers are an important mechanism to wait for all work-items to be synchronized at points in the code. However,
it is very important NOT to use barriers in if/else constructs. The reason is that some work items may not sync at the
barrier, while others may block at the barrier; resulting in a deadlock of the GPU (i.e. you would have to reset your
machine!).

The pattern to use a barrier is:

* Load values into local memory

¢ barrier(CL_LOCAL MEM FENCE); // wait for load to finish
* Use local memory in your algorithm

¢ Dbarrier(CL_LOCAL MEM FENCE); // wait for all work-items

7.3 Local work-group size

When running a kernel, the method enqueueNDRangeKernel(), takes the parameters:
¢ global work size — the global number of work-items in N dimensions i.e. the size of the problem.
* local work size — the number of work-items that make up a work-group. Synchronization between
work-items (with barriers) can only be within a work-group.
If local work size[0] * local work size[l] * ... * local work size[N-1] > kernel.getWorkGroupInfo(device,
c.KERNEL WORK GROUP_SIZE), the program won’t execute!
c.LKERNEL PREFERRED WORK GROUP_SIZE MULTIPLE can be used to make block-size multiple of that
size. AMD calls that size wavefront size and NVidia calls it warp size. Note: this value is often 32 for NVidia GPUs,
64 for AMD GPUs.
Since kernels can’t allocate memory dynamically, one trick could be to compile a small program to get such
kernel dependent values, add them on top of your real program code as constants (or #define) before compiling it.

7.4 Learn parallel patterns!

Parallel programming is not new. In fact, it might be as old as modern computers. Since the 60s lots of work has
been done on supercomputers and many patterns have been found but they are still an active area of research. Learning
how to use these patterns can simplify your code and more importantly lead to faster performance for your programs
O[13][21]. Algorithms such as map, reduce, scan, scatter/gather, stencils, pack [21], Berkely Parallel Computing
Laboratory’s pattern language for parallel computing [32], and Murray Cole’s algorithmic skeletons 0 are examples of
such parallel algorithms and methodologies you need to know.

8 WebCL implementations

At the time of writing, the following prototypes are available:
* Nokia WebCL prototype [16] as a Mozilla FireFox extension
* Mozilla FireFox implementation [18]
¢ Samsung WebKit prototype [17]
* Motorola Mobility node-webcl module [15], a Node.JS based implementation.

23

SIGGRAPH2012 ~/’¢

Motorola Mobility node-webcl implementation is based on Node.JS, which uses Google V8 JavaScript engine, as
in Google Chrome browser. This implementation is up to date with the latest WebCL specification and allows quick
prototyping of WebCL features before they become available in browsers. Coupled with Node.JS features, it also
enables server-side applications using WebCL. All examples in this course have been developed and tested first with
node-webcl.

9 Perspectives

This course provided the foundations for developers to experiment with the exciting world of high-performance
computing on the web. OpenCL is a rather young technology and it is not uncommon to find bugs in current
implementations. However, WebCL implementations would abstract these technical issues for safer, more robust, more
secure, and more portable applications, as the specification mature with feedback from users, hardware manufacturers
and browser vendors. Meanwhile, prototype WebCL implementations are already available and we hope this course
gave you all the excitement to start hacking your GPUs today for cool applications tomorrow ©

24

SIGGRAPH2012»/"

Appendix A CL-GL code

This appendix provides source code for applications described in section 6.1.4. The first two sections provide the

Graphics and Compute module objects. The third section is a direct translation from GLSL to OpenCL kernel language
using techniques described in section 7.1. The last section is an example optimized version using local memory and
work-groups.

A.1 Graphics object

1 /*

2 * Graphics module object contains all WebGL initializations for a simple
3 * 2-triangle textured screen aligned scene and its rendering.
4 */

5 function Graphics() {

6 var gl;

7 var shaderProgram;

8 var TextureId = null;

9 var VertexPosBuffer, TexCoordsBuffer;

10

11 /*

12 * Init WebGL array buffers

13 */

14 function init_buffers() {

15 log(' create buffers');

16 var VertexPos = [-1, -1,

17 1, -1,

18 i, i,

19 -1, 1 1;

20 var TexCoords = [0, O,

21 1, o,

22 i, i,

23 0, 1 1;

24

25 VertexPosBuffer = gl.createBuffer();

26 gl.bindBuffer(gl.ARRAY BUFFER, VertexPosBuffer);
27 gl.bufferData(gl.ARRAY BUFFER, new Float32Array(VertexPos), gl.STATIC_DRAW);
28 VertexPosBuffer.itemSize = 2;

29 VertexPosBuffer.numItems = 4;

30

31 TexCoordsBuffer = gl.createBuffer();

32 gl.bindBuffer (gl.ARRAY BUFFER, TexCoordsBuffer);
33 gl.bufferData(gl.ARRAY BUFFER, new Float32Array(TexCoords), gl.STATIC_DRAW);
34 TexCoordsBuffer.itemSize = 2;

35 TexCoordsBuffer.numItems = 4;

36 }

37

38 /*

39 * Compile vertex and fragment shaders

40 *

41 * @param gl WebGLContext

42 * @param id <script> id where the source of the shader resides
43 */

44 function compile_ shader(gl, id) {

45 var shaders = {

46 "shader-vs" : [

47 "attribute vec3 aCoords;",

48 "attribute vec2 aTexCoords;",

49 "varying vec2 vTexCoords;",

50 "void main(void) {",

51l " gl _Position = vec4(aCoords, 1.0);",
52 " vTexCoords = aTexCoords;",

53 "}" 1.join("\n"),

54 "shader-fs" : [

55 "#ifdef GL_ES",

56 " precision mediump float;",

57 "#endif",

58 "varying vec2 vTexCoords;",

59 "uniform sampler2D uSampler;",

60 "void main(void) {",

25

>
SIGGRAPH20124/_4

o

}
/

gl_FragColor = texture2D(uSampler, vTexCoords.st);",
"}U].j0in("\n"),

var shader;
var str = shaders[id];

if (id.match(/-fs/)) {

shader = gl.createShader(gl.FRAGMENT_SHADER) ;
} else if (id.match(/-vs/)) {

shader = gl.createShader(gl.VERTEX_SHADER) ;
} else {

throw 'Shader '+id+' not found';

}

gl.shaderSource(shader, str);
gl.compileShader (shader);

if (!gl.getShaderParameter(shader, gl.COMPILE_STATUS)) {
throw gl.getShaderInfolog(shader);
}

return shader;

*

* Initialize vertex and fragment shaders, link program and scene objects
*/

function init_shaders() {

}
/

log(' 1Init shaders');
var fragmentShader = compile_shader(gl, "shader-fs");
var vertexShader = compile_shader(gl, "shader-vs");

shaderProgram = gl.createProgram();
gl.attachShader (shaderProgram, vertexShader);
gl.attachShader (shaderProgram, fragmentShader);
gl.linkProgram(shaderProgram) ;

if (!gl.getProgramParameter (shaderProgram, gl.LINK_STATUS))
throw "Could not link shaders";

gl.useProgram(shaderProgram) ;

shaderProgram.vertexPositionAttribute = gl.getAttribLocation(shaderProgram, "aCoords");
gl.enableVertexAttribArray(shaderProgram.vertexPositionAttribute);

shaderProgram.textureCoordAttribute = gl.getAttribLocation(shaderProgram, "aTexCoords");
gl.enableVertexAttribArray(shaderProgram.textureCoordAttribute);

shaderProgram.samplerUniform = gl.getUniformLocation(shaderProgram, "uSampler");

*

* Render the scene at a timestamp.

*

* @param timestamp in ms as given by new Date().getTime()
*/

function display(timestamp) {

// we just draw a screen-aligned texture
gl.viewport(0, 0, gl.viewportWidth, gl.viewportHeight);

gl.enable(gl.TEXTURE_2D);
gl.bindTexture(gl.TEXTURE_2D, TextureId);

// draw screen aligned quad

gl.bindBuffer(gl.ARRAY BUFFER, VertexPosBuffer);

gl.vertexAttribPointer(shaderProgram.vertexPositionAttribute,
VertexPosBuffer.itemSize, gl.FLOAT, false, 0, 0);

gl.bindBuffer(gl.ARRAY BUFFER, TexCoordsBuffer);
gl.vertexAttribPointer(shaderProgram.textureCoordAttribute,
TexCoordsBuffer.itemSize, gl.FLOAT, false, 0, 0);

gl.activeTexture(gl.TEXTUREO) ;
gl.uniformli(shaderProgram.samplerUniform, 0);

26

SIGGRAPH2012»/”

137 gl.drawArrays(gl.TRIANGLE_FAN, 0, 4);

138

139 gl.bindTexture(gl.TEXTURE_ 2D, null);

140 gl.disable(gl.TEXTURE 2D);

141

142 gl.flush();

143 }

144

145 /*

146 * Initialize WebGL

147 *

148 * @param canvas HTML5 canvas object

149 */

150 function init(canvas) {

151 log('Init GL'");

152 gl = canvas.getContext("experimental-webgl");
153 gl.viewportWidth = canvas.width;

154 gl.viewportHeight = canvas.height;

155

156 init buffers();

157 init_shaders();

158 }

159

160 /*

161 * Configure shared data i.e. our WebGLImage

162 *

163 * @param TextureWidth width of the shared texture
164 * @param TextureHeight height of the shared texture
165 */

166 function configure_shared_data(TextureWidth, TextureHeight) {
167 if (Textureld) {

168 gl.deleteTexture(Textureld);

169 TextureId = null;

170 }

171

172 gl.viewportWidth = TextureWidth;

173 gl.viewportHeight = TextureHeight;

174

175 // Create OpenGL texture object

176 gl.activeTexture(gl.TEXTUREO) ;

177 TextureId = gl.createTexture();

178 gl.bindTexture(gl.TEXTURE_ 2D, TextureId);

179 gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST);
180 gl.texParameteri(gl.TEXTURE 2D, gl.TEXTURE MIN FILTER, gl.NEAREST);
181 gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, TextureWidth, TextureHeight, 0,
182 gl.RGBA, gl.UNSIGNED_BYTE, null);

183 gl.bindTexture(gl.TEXTURE_2D, null);

184

185 return Textureld;

186 }

187

188 return {

189 'gl': function() { return gl; },

190 'TextureId': function() { return TextureId; },
191 'configure_shared_data': configure_shared data,
192 'init': init,

193 'display': display,

194 'clean': function() {}

195 };

196 1}

A.2 Compute object

The compute object reads a kernel from a string. The string may come from a <script type="x-webcl”> or from a

file.

1 /*

2 * Compute contains all WebCL initializations and runtime for our kernel
3 * that update a texture.

4 */

5 function Compute() {

6 var cl=new WebCL();

7 var /* cl_context */ clContext;

27

SIGGRAPHzom;O

var
var
var
var
var
var
var
var
var
var
var

* ok kX ok kX

/
fun
1
i

/* cl_command_gqueue */ clQueue;

/* cl_program */ clProgram;

/* cl_device_id */ clDevice;

/* cl_device_type */ clDeviceType = cl.DEVICE_TYPE_GPU;
/* cl_image */ clTexture;

/* cl_kernel */ clKernel;

max_workgroup_ size, max workitem sizes, warp_size;

TextureWidth, TextureHeight;

COMPUTE_KERNEL_1ID;

COMPUTE_KERNEL_NAME;

nodejs = (typeof window === 'undefined');

Initialize WebCL context sharing WebGL context

@param gl WebGLContext

@param kernel_id the <script> id of the kernel source code
@param kernel name name of the _ kernel method

ction init(gl, kernel_id, kernel name) {
og('init CL');
f(gl === 'undefined' || kernel_id === 'undefined’

|| kernel name === 'undefined')

throw 'Expecting init(gl, kernel_id, kernel_name)';

COMPUTE_KERNEL_ID = kernel_id;
COMPUTE_KERNEL_NAME = kernel_name;

/
v
v

/
c

v
i

}

v

/ Pick platform
ar platformList = cl.getPlatforms();
ar platform = platformList[0];

/ create the OpenCL context
lContext = cl.createContext({
deviceType: clDeviceType,
shareGroup: g1,

platform: platform });

ar device_ids = clContext.getInfo(cl.CONTEXT DEVICES);

£ (!device_ids) {
throw "Error: Failed to retrieve compute devices for context!";

ar device_found = false;

for(var i=0,l=device_ids.length;i<l;++i) {

}

i

/
t

}

[}

}
/

v
v
1

i

i
i

device_type = device_ids[i].getInfo(cl.DEVICE_TYPE);
if (device_type == clDeviceType) {

clDevice = device_ids[i];

device_found = true;

break;

£ (!device_found)
throw "Error: Failed to locate compute device!";

/ Create a command queue

ry {
clQueue = clContext.createCommandQueue(clDevice, 0);

atch(ex) {
throw "Error: Failed to create a command queue! "+ex;

/ Report the device vendor and device name

ar vendor_name = clDevice.getInfo(cl.DEVICE_VENDOR) ;

ar device_name = clDevice.getInfo(cl.DEVICE_NAME);
og("Connecting to " + vendor_name + " " + device_name);

f (!clDevice.getInfo(cl.DEVICE_IMAGE_SUPPORT))
throw "Application requires images: Images not supported on this

nit_cl_buffers();
nit_cl_kernels();

device.";

28

SIGGRAPH2012»/"

129
130
131
132
133
134
135
136
137
138

140
141
142
143
144
145
146
147
148
149
150
151
152

154
155
156

/*

*

*

Initialize WebCL kernels

/

function init_cl_kernels() {

fast

L A

log(' setup CL kernel');
clProgram = null;

if(!nodejs) {
var sourceScript = document.getElementById(COMPUTE_KERNEL_ID);
if (!sourceScript)
throw "Can't find CL source <script>";
var str = "";
var k = sourceScript.firstChild;
while (k) {
if (k.nodeType == 3) {
str += k.textContent;

}
k = k.nextSibling;
}
if (sourceScript.type == "x-webcl")
source = str;
else
throw "<script> type should be x-webcl";
}
else {
log("Loading kernel source from file '" + COMPUTE_KERNEL_ID + "'...");
source = fs.readFileSync(__dirname + '/' + COMPUTE_KERNEL ID, 'ascii');
if (!source)
throw "Error: Failed to load kernel source!";

// Create the compute program from the source buffer
try {
clProgram = clContext.createProgram(source);
}
catch(ex) {
throw "Error: Failed to create compute program! "+ex;

}

// Build the program executable
try {
clProgram.build(clDevice, '-cl-unsafe-math-optimizations -cl-single-precision-constant -cl-
-relaxed-math -cl-mad-enable');
} catch (err) {
throw "Error: Failed to build program executable!\n"
+ clProgram.getBuildInfo(clDevice, cl.PROGRAM_BUILD_LOG) ;

}
// Create the compute kernels from within the program
try {

clKernel = clProgram.createKernel (COMPUTE_KERNEL_NAME) ;
}

catch(ex) {
throw "Error: Failed to create compute row kernel! "+ex;

}

// Get the device intrinsics for executing the kernel on the device

max_workgroup_size = clKernel.getWorkGroupInfo(clDevice, cl.KERNEL_WORK_GROUP_SIZE);
max_workitem sizes=clDevice.getInfo(cl.DEVICE_MAX WORK_ITEM SIZES);
warp_size=clKernel.getWorkGroupInfo(clDevice, cl.KERNEL_PREFERRED WORK_GROUP_SIZE_ MULTIPLE);

log(' max workgroup size: '+max_workgroup_size);
log(' max workitem sizes: '+max_workitem sizes);
log(' warp size: '+warp_size);

(Re-)set kernel arguments

@param time timestamp in ms (as given by new Date().getTime()
@param image_width width of the image

@param image_height height of the image

29

SIGGRAPH2012;/’Q

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

217
218
219
220
221
222
228]
224
225
226
227
228

230
231

*/

function resetKernelArgs(time, image_width, image_height) {
TextureWidth = image width;
TextureHeight = image_ height;

// set the kernel args

try {
// Set the Argument values for the row kernel
clKernel.setArg(0, clTexture);
clKernel.setArg(l, time, cl.type.FLOAT);

} catch (err) {

throw "Failed to set row kernel args! + err;
}
}
/*
* Initialize WebCL buffers
274

function init_cl_buffers() {
//log(' create CL buffers');
}

/*
* Configure shared data with WebGL i.e. our texture
*
* @param gl WebGLContext
* @param glTexture WebGLTexture to share with WebCL
*/
function configure_shared _data(gl, glTexture) {
// Create OpenCL representation of OpenGL Texture
clTexture = null;
try {
clTexture = clContext.createFromGLTexture2D(cl.MEM_WRITE_ONLY,
gl.TEXTURE_2D, 0, glTexture);
} catch (ex) {
throw "Error: Failed to create CL Texture object.

}

"+ ex;

return clTexture;

}

/*
* Execute kernel possibly at each frame before rendering results with WebGL
*
* @param gl WebGLContext
*/
function execute_kernel(gl) {
// Sync GL and acquire buffer from GL
gl.flush();
clQueue.enqueueAcquireGLObjects (clTexture) ;

// Set global and local work sizes for kernel
var local = [];

local[0] = warp_size;
local[l] = max_workgroup_size / local[0];
var global = [clu.DivUp(TextureWidth, local[0]) * local[0],

clu.DivUp(TextureHeight, local[l]) * local[l]];

// default values
//var local = null;
//var global = [TextureWidth, TextureHeight];

try {
clQueue.enqueueNDRangeKernel (clKernel, null, global, local);
} catch (err) {
throw "Failed to enqueue kernel!

}

+ err;

// Release GL texture
clQueue.enqueueReleaseGLObjects (clTexture);
clQueue.flush();

}

return {
'init':init,

30

>
SIGGRAPH2012(_4

232 'configure_shared_data': configure_shared_data,
233 'resetKernelArgs': resetKernelArgs,

234 'execute kernel': execute kernel,

235 'clean': function() {}

236 }

237 }

A.3 Mandelbulb kernel (direct conversion)

The Mandelbulb 3D fractal, raymarched and colored with orbit traps and fake ambient occlusion by Ifiigo Quilez
[24] with authorization, is converted directly to an OpenCL kernel.

1 // forward declarations

2 bool isphere(float4 sph, float3 ro, float3 rd, float2 *t);

3 bool iterate(float3 g, float *resPot, float4 *resColor);

4 bool ifractal(float3 ro, float3 rd, float *rest, float maxt, float3 *resnor, float4 *rescol,
float fov);

5

6 inline bool isphere(float4 sph, float3 ro, float3 rd, float2 *t) {
7 float3 oc = ro - sph.xyz;

8 float b = dot(oc,rd);

9 float ¢ = dot(oc,oc) - sph.w*sph.w;

10

11 float h = b*b - c;
12 if(h<0)

13 return false;

14

15 float g = sqrt(h);
16 t->x = - b - g;

17 t->y = - b + g;
18

19 return true;

20 }

21

22 #define NumIte 7
23 #define Bailout 100

24

25 inline bool iterate(float3 g, float *resPot, float4 *resColor) {
26 float4 trap = (float4)(100);

27 float3 zz = q;

28 float m = dot(zz,zz);

29 if(m > Bailout) {

30 *resPot = 0.5f*log(m); ///pow(8.0£f,0.0f);

31 *resColor = (float4)(l);

32 return false;

33 }

34

35 for(int i=1; i<NumIte; i++) {

36 float x = zz.xX; float x2 = x*x; float x4 = x2*x2;

37 float y = zz.y; float y2 = y*y; float y4 = y2*y2;

38 float z = zz.z; float z2 = z*z; float z4 = 2z2*z2;

39

40 float k3 = x2 + z2;

41 float k2 = rsqrt(k3*k3*k3*k3*k3*k3*k3);

42 float kl = x4 + y4 + 24 - 6*y2%22 - 6*xX2*y2 + 2%22%x2;
43 float k4 = x2 - y2 + 2z2;

44

45 2Z.X = g.X + 64*x*y*z*(x2-22)*k4*(x4-6.0%x2*%22+24)*kl*k2;
46 zz.y = g.y + -16*y2*k3*kd*kd + klxkl;

47 z2Z.2 = .2 + -8*y*k4*(x4*x4 - 28*x4*x2*z2 + T70*x4*z4 - 28*x2*%z2*%z4 + z4*z4)*k1*k2;
48

49 m = dot(zz,2z2z);

50

51 trap = min(trap, (float4)(zz.xyz*zz.xyz,m));

52

53 if(m > Bailout)

54 {

515) *resColor = trap;

56 *resPot = 0.5f*log(m)/pow(8.0£f,1);

57 return false;

58 }

59 }

60

31

SIGGRAPHzom;O

*resColor =
*resPot = 0
return true

trap;

7
’

inline bool ifractal(float3 ro, float3 rd, float *rest, float maxt,

float3 *resnor, float4 *rescol, float fov) {
float4 sph = (float4)(0.0, 0.0, 0.0, 1.25);
float2 dis;

// bounding sphere
if(!isphere(sph,ro,rd,&dis))
return false;

// early skip
if(dis.y<0.001f) return false;

// clip to near!
if(dis.x<0.001f) dis.x = 0.001f;

if(dis.y>maxt) dis.y = maxt;

float dt;

float3 gra;

float4 color;

float4 col2;

float potl;

float pot2, pot3, pot4;

float fovfactor = 1.0f/sqrt(l+fov*fov);

// raymarch!
for(float t=dis.x; t<dis.y;) {
float3 p = ro + rd*t;

float Surface = clamp(0.00lf*t*fovfactor, 0.000001f, 0.005f);
float eps = Surface*0.1lf;

if(iterate(p,&potl,&color)) {
*rest = t;
*resnor=normalize(gra);
*rescol = color;
return true;

}

iterate(p+(float3)(eps,0.0,0.0),&pot2,&co0l2);
iterate(p+(float3)(0.0,eps,0.0),&pot3,&col2);
iterate(p+(float3)(0.0,0.0,eps),&potd, &col2);

gra = (float3)(pot2-potl, pot3-potl, potéd-potl);
dt = 0.5f*potl*eps/length(gra);

if(dt<Surface) {
*rescol = color;
*resnor = normalize(gra);
*rest = t;
return true;

}

t+=dt;
}

return false;

kernel

void compute(_ write_only image2d_t pix, float time) {

int x=get_global_id(0), y=get global_id(1);
const int width = get_global_size(0);

const int height = get_global_size(1l);
float2 resolution=(float2) (width,height);
float2 gl_FragCoord=(float2) (x,y);

float2 p = (float2)(-1.f + 2.f * gl_FragCoord.xy / resolution.xy);

32

’
SIGGRAPH20124/_4

float2 s = p*(float2)(1.33,1.0);

float3 lightl = (float3)(0.577f, 0.577f, 0.577f);
float3 light2 = (float3)(-0.707f, 0, 0.707f);

float fov = 1;

float r = 1.4f+0.2f*cospi(2.£f*time/20.f);

float3 campos = (float3)(r*sinpi(2.f*time/20.f),
0.3f-0.4f*sinpi(2.f*time/20.f),
r*cospi(2.f*time/20.£f));

float3 camtar = (float3)(0,0.1,0);

//camera matrix

float3 cw = normalize(camtar-campos);
float3 cp = (float3)(0,1,0);

float3 cu = normalize(cross(cw,cp));
float3 cv = normalize(cross(cu,cw));

// ray dir
float3 rd;
float3 nor, rgb;
float4 col;
float t;

rd = normalize(s.x*cu + s.y*cv + 1l.5f*cw);
bool res=ifractal(campos,rd,&t,l1e20f,&nor,&col,fov);

if(l!res) {

rgb = 1.3f*(float3)(1,.98,0.9)*(0.7f+0.3f*rd.y);
}
else {

float3 xyz = campos + t*rd;

// sun light
float difl = clamp(0.2f + 0.8f*dot(lightl, nor), 0.f, 1.f);
difl=difl*difl;

// back light
float dif2 = clamp(0.3f + 0.7f*dot(light2, nor), 0.f, 1.f);

// ambient occlusion
float ao = clamp(l.25f*col.w-.4£f,0.£,1.£f);
ao=0.5f*ao*(ao+l);

// shadow
if(dif1>0.001f) {
float 1tl;
float3 1n;
float4 lc;
if(ifractal(xyz,lightl,<l,1e20,&ln,&lc,fov))
difl = 0.1f;
}

// material color
rgb = (float3)(1);

rgb = mix(rgb, (float3)(0.8,0.6,0.2), (float3)(sqrt(col.x)*1.25f));
rgb = mix(rgb, (float3)(0.8,0.3,0.3), (float3)(sgrt(col.y)*1.25f));
rgb = mix(rgb, (float3)(0.7,0.4,0.3), (float3)(sqgrt(col.z)*1.25f));

// lighting
rgb *= (0.5f+0.5f*nor.y)*
(float3)(.14,.15,.16)*0.8f +
difl*(float3)(1.0,.85,.4) +
0.5f*dif2*(float3)(.08,.10,.14);
rgb *= (float3)(pow(ao,0.8f), pow(ao,1.00f), pow(ao,l.1f));

// gamma
rgb = 1.5f*(rgb*0.15f + 0.85f*sqrt(rgb));
}

float2 uv = 0.5f*(p+1.£f);
rgb *= 0.7f + 0.3f*16.0f*uv.x*uv.y*(1l.0f-uv.x)*(1l.0f-uv.y);
rgb = clamp(rgb, (float3)(0), (float3)(1l));

33

SIGGRAPHzom;O

211 write_ imagef (pix, (int2)(x,y), (float4)(rgb,1.0f));
212 }

A.4 Mandelbulb kernel (optimized)

The main idea is to move to local memory all parameters necessary for computation.

1 #define WARPSIZE 256
2

3 typedef struct {

4 float3 origin;

5 float r;

6 float2 dis;

7 } Sphere;

8

9 typedef struct {

10 float3 origin;

11 float3 dir;

12 float3 nor;

13 float4 col;

14 float fovfactor;
15 float t;

16 float3 rgb;

17 Sphere sph;

18 } __attribute_ ((aligned(16))) Ray;
19

20

21 // forward declarations

22 bool isphere(_ local Ray *ray);
23 bool iterate(const float3 g, float *resPot, float4 *resColor);
24 bool ifractal(__ local Ray *ray);

25

26 inline bool isphere(_ local Ray *ray) {

27 const float3 oc = ray->origin - ray->sph.origin;

28 const float b = dot(oc,ray->dir);

29 const float ¢ = dot(oc,oc) - ray->sph.r*ray->sph.r;
30

31 const float h = b*b - c;

32 if(h<0)

33 return false;

34

35 const float g = native_sqrt(h);

36 ray->sph.dis = (float2) (- b - g, - b + g);

37

38 return true;

39 }

40

41 __constant int NumIte=8;

42 _ constant float Bailout=100;

43 _ constant float EPS=0.001f;

44 __constant float MAXT=1e20f;

45 _ constant float3 lightl = (float3)(0.577f, 0.577f, 0.577f);
46 _ constant float3 light2 = (float3)(-0.707f, 0, 0.707f);
47

48 inline bool iterate(const float3 g, float *resPot, float4 *resColor)
49 {

50 float4 trap = (floatd)(100);

51 float3 zz = q;

52 float m = dot(zz,zz);

53 if(m > Bailout) {

54 *resPot = 0.5f*native_log(m); // /pow(8.0f,0.0f);

55 *resColor = (float4)(l);

56 return false;

57 }

58

59 #pragma unroll 4

60 for(int i=0; i<NumIte; i++) {

61 const float x = zz.x; const float x2 = x*x; const float x4 = x2*x2;
62 const float y = zz.y; const float y2 = y*y; const float y4 = y2*y2;
63 const float z = zz.z; const float z2 = z*z; const float z4 = 2z2*z2;
64

65 const float k3 = x2 + z2;

66 const float k2 = rsqrt(k3*k3*k3*k3*k3*k3*k3);

34

’
SIGGRAPH2012v/_4

67 const float k1l = x4 + y4 + z4 — 6*y2*%z2 — 6%xX2*%y2 + 2%z2%x2;
68 const float k4 = x2 - y2 + z2;

69

70 ZZ.X = g.X + 64*x*y*z*(x2-22)*k4d*(x4-6.0*x2*22+24)*kl*k2;
71 zz.y = .y + -16*y2*k3*kd*kd4 + klxkl;

72 22.2 = .z + -8*y*k4*(x4*x4 - 28*%*x4*x2%22 + T0*x4*z4 - 28+%x2%2z2%z4 + z4%z4)*kl*k2;
73

74 m = dot(zz,zz);

75

76 trap = min(trap, (float3)(zz.xyz*zz.xyz,m));

77

78 if(m > Bailout) {

79 *resColor = trap;

80 *resPot = 0.5f*native log(m)/native powr(8.0f,1i);
81 return false;

82 }

83 }

84

85 *resColor = trap;

86 *resPot = 0;

87 return true;

88 }

89

90 inline bool ifractal(_ local Ray *ray) {

91 __local Sphere *sph=&ray->sph;

92 sph->origin = (float3)(0);

93 sph->r = 1.25f;

94

95 // bounding sphere

96 if(!isphere(ray))

97 return false;

98

99 // early skip

100 if(sph->dis.y<EPS) return false;

101

102 // clip to near!
103 if(sph->dis.x<EPS) sph->dis.x = EPS;

105 if(sph->dis.y>MAXT) sph->dis.y = MAXT;

107 float dt;

108 float3 gra;

109 float4 color, col2;

110 float potl, pot2, pot3, pot4;

112 // raymarch!
113 float t=sph->dis.x, Surface, eps;
114 float3 p = ray->origin + ray->dir * t;

115

116 while(t < sph->dis.y) {

117 if(iterate(p,&potl,&color)) {

118 ray->t = t;

119 ray->nor = fast_normalize(gra);

120 ray->col = color;

121 return true;

122 }

123

124 Surface = clamp(EPS*t*ray->fovfactor, 0.000001f, 0.005f);
125 eps = Surface*0.1f;

126

127 iterate(p+(float3)(eps,0.0,0.0),&pot2,&c0l2);
128 iterate(p+(float3)(0.0,eps,0.0),&pot3,&col2);
129 iterate(p+(float3)(0.0,0.0,eps),&pot4d, &col2);
130

131 gra = (float3)(pot2-potl, pot3-potl, potd-potl);
132 dt = 0.5f*potl*eps/fast_length(gra);

133

134 if(dt<Surface) {

135 ray->col = color;

136 ray->nor = fast normalize(gra);

137 ray->t = t;

138 return true;

139 }

140

141 t += dt;

>
SIGGRAPH2012v(_4

142 p += ray->dir * dt;
143 }

145 return false;
146 1}

148 _ kernel

149 void compute(__write only image2d_t pix, const float time) {
150 const int x = get_global_id(0);

151 const int y = get_global_id(1l);

152 const int x1 = get_local id(0);

153 const int yl = get_local_id(1l);

154 const int tid = xl+yl*get local size(0);

155 const int width = get_global_size(0)-1;

156 const int height = get_global_size(1l)-1;

158 const float2 resolution = (float2)(width,height);
159 const float2 gl_FragCoord = (float2)(x,y);

161 const float2 p = (float2)(-1.f + 2.f * gl_FragCoord / resolution);
162 const float2 s = p*(float2)(1.33,1.0);

163

164 const float fov = 0.5f, fovfactor = rsqrt(l+fov*fov);

165

166 const float ct=native_cos(2*M PI_F*time/20.f), st=native_sin(2*M_PI_F*time/20.f);

167 const float r = 1.4f+0.2f*ct;
168 const float3 campos = (float3)(r*st, 0.3f-0.4f*st, r*ct);
169 const float3 camtar = (float3)(0,0.1,0);

170
171 //camera matrix
172 const float3 cw = fast_normalize(camtar-campos);

(float3)(0,1,0);
fast_normalize(cross(cw,cp));

173 const float3 cp
174 const float3 cu

175 const float3 cv = fast_normalize(cross(cu,cw));

176

177 // ray

178 __local Ray rays[WARPSIZE+l],*ray=rays+tid;

179 ray->origin=campos;

180 ray->dir = fast normalize(s.x*cu + s.y*cv + 1l.5f*cw);
181 ray->fovfactor = fovfactor;

182

183 barrier (CLK_LOCAL_MEM_FENCE);

184

185 const bool res=ifractal(ray);

186

187 if(!res) {

188 // background color

189 ray->rgb = 1.3f*(£float3)(1,0.98,0.9)*(0.7f+0.3f*ray->dir.y);
190 }

191 else {

192 // intersection point

193 const float3 xyz = ray->origin + ray->t * ray->dir;
194

195 // sun light

196 float difl = clamp(0.2f + 0.8f*dot(lightl, ray->nor), 0.f, 1.f);
197 difl=difl*difl;

198

199 // back light

200 const float dif2 = clamp(0.3f + 0.7f*dot(light2, ray->nor), 0.f, 1.f);
201

202 // ambient occlusion

203 const float aot = clamp(l.25f*ray->col.w-.4f, 0.f, 1.f);
204 const float ao=0.5f*aot*(aot+1);

205

206 // shadow: cast a lightray from intersection point
207 if(difl > EPS) {

208 __local Ray *lray=rays+256;

209 lray->origin=xyz;

210 lray->dir=1lightl;

211 lray->fovfactor = fovfactor;

212 if(ifractal(lray))

213 difl = 0.1f;

214 }

215

216 // material color

_—
CIAADADLINNND

-—

217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
2188
234
235
236
237
238
239

(float3)(1);

ray->rgb =

ray->rgb = mix(ray->rgb, (float3)(0.8,0.6,0.2), (float3)(native_sqgrt(ray->col.x)*1.25f)
ray->rgb = mix(ray->rgb, (float3)(0.8,0.3,0.3), (float3)(native_sqrt(ray->col.y)*1.25f)
ray->rgb = mix(ray->rgb, (float3)(0.7,0.4,0.3), (float3)(native_sqgrt(ray->col.z)*1.25f)

// lighting

ray->rgb *= (0.5f+0.5f * ray->nor.y)*
(float3)(.14,.15,.16)*0.8f +
difl*(float3)(1.0,.85,.4) +
0.5f*dif2*(float3)(.08,.10,.14);

ray->rgb *= (float3)(native_ powr(ao,0.8f), native powr(ao,1.0f), native powr(ao,l.1f));

// gamma

ray->rgb = 1.5f*(ray->rgb*0.15f + 0.85f*native_sqrt(ray->rgb));

}

const float2 uv = 0.5f*(p+l1.f);

ray->rgb *= 0.7f + 0.3f*16.f*uv.x*uv.y*(l.f-uv.x)*(1l.f-uv.y);

ray->rgb = clamp(ray->rgb, (float3)(0), (float3)(1l));

write_imagef (pix, (int2)(x,y), (float4) (ray->rgb,1.0f));

}

)i
)i
)i

Appendix B

OpenCL and CUDA terminology

NVidia provides CUDA, an older API than OpenCL very used on their devices. CUDA and WebCL/OpenCL
share similar concepts but a different terminology that we give below, borrowed from AMD article [30] and adapted to

WebCL.
Terminology
WebCL/OpenCL CUDA
Compute Unit (CU) Streaming Multiprocessor (SM)
Processing Element (PE) Streaming Processor (SP)
Work-item Thread
Work-group Thread block
Global memory Global memory

Constant memory

Constant memory

Local memory

Shared memory

Private memory

Local memory

Writing kernels: qualifiers

WebCL/OpenCL CUDA

__kernel function

__global _ function

(no annotation necessary)

__device__ function

__constant variable

__constant__ variable

__global variable

__device__ variable

_ local variable

_ shared__ variable

Writing kernels: indexing

WebCL/OpenCL CUDA
get num_groups() gridDim
get local_size() blockDim
get_group_id() blockldx
get local id() threadldx
get global id() No direct equivalent. Combine blockDim,

37

CIAAD ADLINN4AND

blockldx, and threadIdx to get a global index.

get_global_size()

No direct equivalent. Combine gridDim and

blockDim to get the global size

Writing kernels: synchronization

WebCL/OpenCL | CUDA
barrier() __syncthreads()
No equivalent __threadfence()

mem_fence(CLK_GLOBAL_MEM _FENCE |
CLK_LOCAL_MEM-FENCEO

_threadfence block()

read mem_fence()

No equivalent

write_mem_fence()

No equivalent

Important API objects

WebCLDevice CUdevice

WebCLContext CUcontext

WebCLProgram CUmodule

WebCLKernel CUfunction

WebCLMemoryObject CUdeviceptr

WebCLCommandQueue No equivalent
Important API calls

No initialization required culnit()

WebCLContext.getInfo() cuDeviceGet()

WebCLContext.create() cuCtxCreate()

WebCLContext.createCommandQueue() No equivalent

WebCLProgram.build() No equivalent. CUDA programs are built off-
line

WebCLContext.createKernel() cuModuleGetFunction()

WebCLCommandQueue.enqueue WriteBuffer() cuMemcpyHtoD()

WebCLCommandQueue,enqueueReadBuffer() cuMemcpyDtoH()

Using locals
WebCLCommandQueue.enqueueNDRange()

of | cuFuncSetBlockShape()

WebCLKernel.setArg() cuParamSet()
Using WebCLKernel.setArg() cuParamSetSize()
WebCLCommandQueue.enqueueNDRangeKernel() | cuLaunchGrid()
Implicit through garbage collection cuMemPFree()

38

’
SIGGRAPH20124/_4

Bibliography

Specifications

[1] Aarnio, T. and Bourges-Sevenier, M. WebCL Working Draft. Khronos WebCL Working Group.
https://cvs.khronos.org/svn/repos/registry/trunk/public/webcl/spec/latest/index.html.

[2] Munshi, A. OpenCL Specification 1.1 Khronos OpenCL Working Group.
http://www khronos.org/registry/cl/specs/opencl-1.1.pdf.

[3] Marrin, C. WebGL Specification. Khronos WebGL Working Group.
http://www.khronos.org/registry/webgl/specs/latest/.

[4] Munshi, A. and Leech, J. OpenGL ES 2.0.25. Khronos Group.
http://www .khronos.org/registry/gles/specs/2.0/es_full spec_2.0.25.pdf.

[5] Simpson, R.J. The OpenGL ES Shading Language. Khronos Group.
http://www.khronos.org/registry/gles/specs/2.0/GLSL_ES_Specification 1.0.17.pdf.

[6] Herman, D. and Russell, K., eds. Typed Array Specification. Khronos.org.
http://www.khronos.org/registry/typedarray/specs/latest/.

[7] OpenCL 1.1 Reference Pages. OpenCL 1.1 Reference Pages. Khronos.org.

http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/.

Programming guides

[8] NVidia OpenCL Programming Guide for the CUDA Architecture. 2012. NVidia OpenCL Programming Guide
for the CUDA Architecture.
[9] AMD Accelerated Parallel Processing OpenCL. 2011. AMD Accelerated Parallel Processing OpenCL.

Books

[10] Gaster, B., Howes, L., Kaeli, D.R., Mistry, P., and Schaa, D. 2011. Heterogeneous Computing with OpenCL.
Morgan Kaufmann.

[11] Scarpino, M. 2011. OpenCL in Action: How to Accelerate Graphics and Computations. Manning Publications.

[12] Munshi, A., Gaster, B., Mattson, T.G., Fung, J., and Ginsburg, D. 2011. OpenCL Programming Guide.
Addison-Wesley Professional.

[13] Kirk, D. and Hwu, W.-M. 2010. Programming Massively Parallel Processors. Morgan Kaufmann.

[14] Hillis, W.D. and Steele, G. 1986. Data parallel algorithms.

WebCL prototypes

[15] Motorola Mobility. Node-webcl, an implementation of Khronos WebCL specification using Node.JS.
https://github.com/Motorola-Mobility/node-webcl

[16] Nokia Research. WebCL. http://webcl.nokiaresearch.com/

[17] Samsung Research. WebCL prototype for WebKit. http://code.google.com/p/webcl/

[18] Mozilla. FireFox WebCL branch. http://hg.mozilla.org/projects/webcl/

Articles and Presentations

[19] Cole, M.I. 1989. Algorithmic skeletons: structured management of parallel computation

[20] Gerstmann, D. 2009. Advanced OpenCL. Siggraph 2009.

[21] McCool, M.D. 2010. Structured parallel programming with deterministic patterns. Proceedings of the 2nd
USENIX conference on Hot topics in parallelism, 5-5.

[22] Bordoloi, U.D. 2010. Optimization Techniques: Image Convolution. 1-25.
http://developer.amd.com/zones/openclzone/events/assets/optimizations-imageconvolution1.pdf.

39

(23]

[24]
(23]

[26]

[27]
(28]

[29]

(30]

[31]
[32]

SIGGRAPHQOQ»/"‘

BDT Nbody Tutorial. BDT Nbody Tutorial. Brown Deer Technology.
http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial NBody-rev3.html.

Ifiigo Quilez. ShaderToy with Mandelbulb shader. http://www.iquilezles.org/apps/shadertoy/?p=mandelbulb
Donnelly, W. GPU Gems - Chapter 8. Per-Pixel Displacement Mapping with Distance Functions.
developer.nvidia.com. http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter08.html.

Mattson, T.G., Buck, 1., Houston, M., and Gaster, B. 2009. OpenCL - A standard platform for programming
heterogeneous parallel computers. SC'09. http://www.crc.nd.edu/~rich/SC09/docs/tut149/OpenCL-tut-sc09.pdf.
Feng, W.-C,, Lin, H., Scogland, T., and Zhang, J. 2012. OpenCL and the 13 dwarfs: a work in progress.
Lefohn, A., Kniss, J., and Owens, J.D. Chapter 33. Implementing Efficient Parallel Data Structures on GPUs.
In: GPU Gems 2. Addison-Wesley.

Kriiger, J. and Westermann, R. Chapter 44. A GPU Framework for Solving Systems of Linear Equations. In:
GPU Gems 2. Addison-Wesley.

Porting CUDA Applications to OpenCL. Porting CUDA Applications to OpenCL. developer.amd.com.
http://developer.amd.com/zones/OpenCLZone/programming/pages/portingcudatoopencl.aspx.

Hensley, J., Gerstmann, D., and Harada, T. OpenCL by Example. SIGGRAPH Asia 2010.

A Pattern Language for Parallel Programming. A Pattern Language for Parallel Programming.

parlab.eecs.berkeley.edu. http://parlab.eecs.berkeley.edu/wiki/patterns/patterns.

OpenCL™ and the OpenCL™ logo are trademarks of Apple Inc. used by permission by Khronos.

40

